276 research outputs found

    Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12

    Full text link
    Zero and longitudinal field muon spin rotation (muSR) experiments were performed on the superconductors PrPt4Ge12 and LaPt4Ge12. In PrPt4Ge12 below Tc a spontaneous magnetization with a temperature variation resembling that of the superfluid density appears. This observation implies time-reversal symmetry (TRS) breaking in PrPt4Ge12 below Tc = 7.9 K. This remarkably high Tc for an anomalous superconductor and the weak and gradual change of Tc and of the related specific heat anomaly upon La substitution in La_(1-x)Pr_xPt_4Ge_(12) suggests that the TRS breaking is due to orbital degrees of freedom of the Cooper pairs.Comment: To appear in Phys. Rev. B. 5 pages, 3 figure

    Cluster approach study of intersite electron correlations in pyrochlore and checkerboard lattices

    Full text link
    To treat effects of electron correlations in geometrically frustrated pyrochlore and checkerboard lattices, an extended single-orbital Hubbard model with nearest neighbor hopping ∼t\sim t and Coulomb repulsion ∼V\sim V is applied. Infinite on-site repulsion, U→∞U\to\infty, is assumed, thus double occupancies of sites are forbidden completely in the present study. A variational Gutzwiller type approach is extended to examine correlations due to short-range V−V-interaction and a cluster approximation is developed to evaluate a variational ground state energy of the system. Obtained analytically in a special case of quarter band filling appropriate to LiV2_2O4_4, the resulting simple expression describes the ground state energy in the regime of intermediate and strong coupling VV. Like in the Brinkman-Rice theory based on the standard Gutzwiller approach to the Hubbard model, the mean value of the kinetic energy is shown to be reduced strongly as the coupling VV approaches a critical value VcV_{c}. This finding may contribute to explaining the observed heavy fermion behavior in LiV2_2O4_4

    Magnetostriction of a Superconductor: -Results from the Critical-State Model

    Full text link
    In many cases, the critical-state theory can be treated as a suffi ciently accurate approximation for the modelling of the magnetic properties of superconductors. In the present work, the magnetostrictive hysteresis is computed for a quite general case of the modified Kim-Anderson model. The results obtained reproduce many features of the giant magnetostriction (butterfly-shaped curves) reported in the literature for measurements made on single-crystal samples of the high-temperature superconductor Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. It is shown that addition of a contribution to the magnetostriction in the superconducting state which is of similar origin as in the normal state, offers a broader phenomenological interpretation of the complex magnetostriction hysteresis found in such heavy-fermion compounds as UPt3UPt_3, URu2Si2URu_2Si_2 or UBe13UBe_{13}.Comment: 9 LaTeX pages, 4 Postscript figures, WWW version available at http://is.dal.ca/~zkoziol/super.htm

    Symmetry properties of the nodal superconductor PrOs4Sb12

    Full text link
    We present a theoretical study of the superconducting gap function in PrOs4Sb12 using a symmetry-based approach. A three-component order parameter in the triplet channel best describes superconductivity. The gap function is non-degenerate and the lower branch has four cusp nodes at unusual points of the Fermi surface, which lead to power law behaviours in the density of states, specific heat and nuclear spin relaxation rate.Comment: to appear in Phys. Rev. B 7

    Evidence for multiband superconductivity in the heavy fermion compound UNi2Al3

    Full text link
    Epitaxial thin films of the heavy fermion superconductor UNi2Al3 with Tc{max}=0.98K were investigated. The transition temperature Tc depends on the current direction which can be related to superconducting gaps opening at different temperatures. Also the influence of the magnetic ordering at TN=5K on R(T) is strongly anisotropic indicating different coupling between the magnetic moments and itinerant charge carriers on the multi-sheeted Fermi surface. The upper critical field Hc2(T) suggests an unconventional spin-singlet superconducting state.Comment: 4 pages, 6 figures revised version: inset of fig. 2 changed, fig. 3 added accepted for pub. in Phys. Rev. Lett. (estimated 9/04

    Line nodes in the superconducting gap function of noncentrosymmetric CePt_3Si

    Full text link
    The superconducting gap structure of recently discovered heavy fermion CePt_3Si without spatial inversion symmetry was investigated by thermal transport measurements down to 40 mK. In zero field a residual T-linear term was clearly resolved as T-> 0, with a magnitude in good agreement with the value expected for a residual normal fluid with a nodal gap structure, together with a T^2-dependence at high temperatures. With an applied magnetic fields, the thermal conductivity grows rapidly, in dramatic contrast to fully gapped superconductors, and exhibits one-parameter scaling with T/sqrt{H}. These results place an important constraint on the order parameter symmetry, that is CePt_3Si is most likely to have line nodes.Comment: 5pages, 3figures, accpted for publication in Phys. Rev. Let

    Universally diverging Grueneisen parameter and the magnetocaloric effect close to quantum critical points

    Full text link
    At a generic quantum critical point, the thermal expansion α\alpha is more singular than the specific heat cpc_p. Consequently, the "Gr\"uneisen ratio'', \GE=\alpha/c_p, diverges. When scaling applies, \GE \sim T^{-1/(\nu z)} at the critical pressure p=pcp=p_c, providing a means to measure the scaling dimension of the most relevant operator that pressure couples to; in the alternative limit T→0T\to0 and p≠pcp \ne p_c, \GE \sim \frac{1}{p-p_c} with a prefactor that is, up to the molar volume, a simple {\it universal} combination of critical exponents. For a magnetic-field driven transition, similar relations hold for the magnetocaloric effect (1/T)∂T/∂H∣S(1/T)\partial T/\partial H|_S. Finally, we determine the corrections to scaling in a class of metallic quantum critical points.Comment: 4 pages, 1 figure; general discussion on how the Grueneisen exponent measures the scaling dimension of the most relevant operator at any QCP is expande

    Origin of Orthorhombic Transition, Magnetic Transition, and Shear Modulus Softening in Iron Pnictide Superconductors: Analysis based on the Orbital Fluctuation Theory

    Full text link
    The main features in iron-pnictide superconductors are summarized as (i) the orthorhombic transition accompanied by remarkable softening of shear modulus, (ii) high-Tc superconductivity close to the orthorhombic phase, and (iii) stripe-type magnetic order induced by orthorhombicity. To present a unified explanation for them, we analyze the multiorbital Hubbard-Holstein model with Fe-ion optical phonons based on the orbital fluctuation theory. In the random-phase-approximation (RPA), a small electron-phonon coupling constant (λ 0.2\lambda ~ 0.2) is enough to produce large orbital (=charge quadrupole) fluctuations. The most divergent susceptibility is the OxzO_{xz}-antiferro-quadrupole (AFQ) susceptibility, which causes the s-wave superconductivity without sign reversal (s_{++}-wave state). At the same time, divergent development of Ox2−y2O_{x2-y2}-ferro-quadrupole (FQ) susceptibility is brought by the "two-orbiton process" with respect to the AFQ fluctuations, which is absent in the RPA. The derived FQ fluctuations cause the softening of C66C_{66} shear modulus, and its long-range-order not only triggers the orthorhombic structure transition, but also induces the instability of stripe-type antiferro-magnetic state. In other words, the condensation of composite bosons made of two orbitons gives rise to the FQ order and structure transition. The theoretically predicted multi-orbital-criticality presents a unified explanation for abovementioned features of iron pnictide superconductors.Comment: 19 pages, 15 figure

    Excitations in Spin Chains and Specific-Heat Anomalies in Yb(4)As(3)

    Full text link
    An explanation is given for the observed magnetic-field dependence of the low-temperature specific heat coefficient of Yb(4)As(3). It is based on a recently developed model for that material which can explain the observed heavy-fermion behaviour. According to it the Yb(3+)-ions are positioned in a net of parallel chains with an effective spin coupling of the order of J = 25 K. The magnetic-field dependence can be understood by including a weak magnetic coupling J' between adjacent chains. The data require a ratio J'/J of about 10^{-4}. In that case the experimental results can be reproduced very well by the theory.Comment: 5 pages, 5 PostScript-figures, needs LaTeX2e and the graphics-packag

    Magneto-structural properties of the layered quasi-2D triangular-lattice antiferromagnets Cs2_2CuCl4−x_{4-x}Brx_x for x{x} = 0,1,2 and 4

    Full text link
    We present a study of the magnetic susceptibility χmol\chi_{mol} under variable hydrostatic pressure on single crystals of Cs2_2CuCl4−x_{4-x}Brx_x. This includes the border compounds \textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs2_2CuCl3_{3}Br1_1 and Cs2_2CuCl2_{2}Br2_2. For the determination of the exchange coupling constants JJ and J′J^{\prime}, χmol\chi_{mol} data were fitted by a J−J′J-J^{\prime} model \cite{Schmidt2015}. Its application, validated for the border compounds, yields a degree of frustration J′J^{\prime}/JJ = 0.47 for Cs2_2CuCl3_3Br1_1 and J′J^{\prime}/JJ ≃\simeq 0.63 - 0.78 for Cs2_2CuCl2_2Br2_2, making these systems particular interesting representatives of this family. From the evolution of the magnetic susceptibility under pressure up to about 0.4\,GPa, the maximum pressure applied, two observations were made for all the compounds investigated here. First, we find that the overall energy scale, given by Jc=(J2J_c = (J^2 + J′2J^{\prime 2})1/2^{1/2}, increases under pressure, whereas the ratio J′J^{\prime}/JJ remains unchanged in this pressure range. These experimental observations are in accordance with the results of DFT calculations performed for these materials. Secondly, for the magnetoelastic coupling constants, extraordinarily small values are obtained. We assign these observations to a structural peculiarity of this class of materials
    • …
    corecore