183 research outputs found
Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application
Recombinant HIV Envelope Proteins Fail to Engage Germline Versions of Anti-CD4bs bNAbs
Vaccine candidates for HIV-1 so far have not been able to elicit broadly neutralizing antibodies (bNAbs) although they express the epitopes recognized by bNAbs to the HIV envelope glycoprotein (Env). To understand whether and how Env immunogens interact with the predicted germline versions of known bNAbs, we screened a large panel (N:56) of recombinant Envs (from clades A, B and C) for binding to the germline predecessors of the broadly neutralizing anti-CD4 binding site antibodies b12, NIH45-46 and 3BNC60. Although the mature antibodies reacted with diverse Envs, the corresponding germline antibodies did not display Env-reactivity. Experiments conducted with engineered chimeric antibodies combining the mature and germline heavy and light chains, respectively and vice-versa, revealed that both antibody chains are important for the known cross-reactivity of these antibodies. Our results also indicate that in order for b12 to display its broad cross-reactivity, multiple somatic mutations within its VH region are required. A consequence of the failure of the germline b12 to bind recombinant soluble Env is that Env-induced B-cell activation through the germline b12 BCR does not take place. Our study provides a new explanation for the difficulties in eliciting bNAbs with recombinant soluble Env immunogens. Our study also highlights the need for intense efforts to identify rare naturally occurring or engineered Envs that may engage the germline BCR versions of bNAbs
A comparative study of cranial, blunt trauma fractures as seen at medicolegal autopsy and by Computed Tomography
<p>Abstract</p> <p>Background</p> <p>Computed Tomography (CT) has become a widely used supplement to medico legal autopsies at several forensic institutes. Amongst other things, it has proven to be very valuable in visualising fractures of the cranium. Also CT scan data are being used to create head models for biomechanical trauma analysis by Finite Element Analysis. If CT scan data are to be used for creating individual head models for retrograde trauma analysis in the future we need to ascertain how well cranial fractures are captured by CT scan. The purpose of this study was to compare the diagnostic agreement between CT and autopsy regarding cranial fractures and especially the precision with which cranial fractures are recorded.</p> <p>Methods</p> <p>The autopsy fracture diagnosis was compared to the diagnosis of two CT readings (reconstructed with Multiplanar and Maximum Intensity Projection reconstructions) by registering the fractures on schematic drawings. The extent of the fractures was quantified by merging 3-dimensional datasets from both the autopsy as input by 3D digitizer tracing and CT scan.</p> <p>Results</p> <p>The results showed a good diagnostic agreement regarding fractures localised in the posterior fossa, while the fracture diagnosis in the medial and anterior fossa was difficult at the first CT scan reading. The fracture diagnosis improved during the second CT scan reading. Thus using two different CT reconstructions improved diagnosis in the medial fossa and at the impact points in the cranial vault. However, fracture diagnosis in the anterior and medial fossa and of hairline fractures in general still remained difficult.</p> <p>Conclusion</p> <p>The study showed that the forensically important fracture systems to a large extent were diagnosed on CT images using Multiplanar and Maximum Intensity Projection reconstructions. Difficulties remained in the minute diagnosis of hairline fractures. These inconsistencies need to be resolved in order to use CT scan data of victims for individual head modelling and trauma analysis.</p
B Cell Recognition of the Conserved HIV-1 Co-Receptor Binding Site Is Altered by Endogenous Primate CD4
The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein
Characterizing Complex Polysera Produced by Antigen-Specific Immunization through the Use of Affinity-Selected Mimotopes
BACKGROUND: Antigen-based (as opposed to whole organism) vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes) can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines
Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region
The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review
The aim of this study was to assess the role of postmortem computed tomography (PMCT) as an alternative for autopsy in determining the cause of death and the identification of specific injuries in trauma victims. A systematic review was performed by searching the EMBASE and MEDLINE databases. Articles were eligible if they reported both PMCT as well as autopsy findings and included more than one trauma victim. Two reviewers independently assessed the eligibility and quality of the articles. The outcomes were described in terms of the percentage agreement on causes of death and amount of injuries detected. The data extraction and analysis were performed together. Fifteen studies were included describing 244 victims. The median sample size was 13 (range 5–52). The percentage agreement on the cause of death between PMCT and autopsy varied between 46 and 100%. The overall amount of injuries detected on CT ranged from 53 to 100% compared with autopsy. Several studies suggested that PMCT was capable of identifying injuries not detected during normal autopsy. This systematic review provides inconsistent evidence as to whether PMCT is a reliable alternative for autopsy in trauma victims. PMCT has promising features in postmortem examination suggesting PMCT is a good alternative for a refused autopsy or a good adjunct to autopsy because it detects extra injuries overseen during autopsies. To examine the value of PMCT in trauma victims there is a need for well-designed and larger prospective studies
Soluble CD4 and CD4-Mimetic Compounds Inhibit HIV-1 Infection by Induction of a Short-Lived Activated State
Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus–cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and small-molecule CD4 mimics (here exemplified by JRC-II-191) also induce these conformational changes in the HIV-1 envelope glycoproteins, but typically inhibit HIV-1 entry into CD4-expressing cells. To investigate the mechanism of inhibition, we monitored at high temporal resolution inhibitor-induced changes in the conformation and functional competence of the HIV-1 envelope glycoproteins that immediately follow engagement of the soluble CD4 mimics. Both sCD4 and JRC-II-191 efficiently activated the envelope glycoproteins to mediate infection of cells lacking CD4, in a manner dependent on coreceptor affinity and density. This activated state, however, was transient and was followed by spontaneous and apparently irreversible changes of conformation and by loss of functional competence. The longevity of the activated intermediate depended on temperature and the particular HIV-1 strain, but was indistinguishable for sCD4 and JRC-II-191; by contrast, the activated intermediate induced by cell-surface CD4 was relatively long-lived. The inactivating effects of these activation-based inhibitors predominantly affected cell-free virus, whereas virus that was prebound to the target cell surface was mainly activated, infecting the cells even at high concentrations of the CD4 analogue. These results demonstrate the ability of soluble CD4 mimics to inactivate HIV-1 by prematurely triggering active but transient intermediate states of the envelope glycoproteins. This novel strategy for inhibition may be generally applicable to high–potential-energy viral entry machines that are normally activated by receptor binding
- …