269 research outputs found

    Voltage Stability Monitoring based on Adaptive Dynamic Mode Decomposition

    Get PDF
    This paper develops a new voltage stability monitoring method using dynamic mode decomposition (DMD) and its adaptive variance. First, state estimation (SE) is used to estimate the voltage in the system. Then, the measured voltages from the phasor measurement units (PMU) and estimations from SE are used as the inputs for DMD to predict the long-term voltage dynamic. Furthermore, to improve the prediction performance, the normal DMD is improved by adaptively changing the size of input samples based on the error in the training phase, named adaptive DMD (ADMD). The effectiveness of the proposed method is validated on the Nordic32 test system, which is recommended as the test system for voltage stability studies. Different contingency scenarios are used, and the results show that the proposed method is able to monitor the voltage stability after a disturbance (i.e., 4.3x10-4 MAPE for a stable case and 0.0041 MAPE for an unstable case). Furthermore, the results from a scenario in which a real-world oscillation event is used show high accuracy in voltage stability monitoring of the proposed ADMD method

    Modelling of FG-TPMS plates

    Full text link
    Functionally graded porous plates have been validated as remarkable lightweight structures with excellent mechanical characteristics and numerous applications. With inspiration from the high strength-to-volume ratio of triply periodic minimal surface (TPMS) structures, a new model of porous plates, which is called a functionally graded TPMS (FG-TPMS) plate, is investigated in this paper. Three TPMS architectures including Primitive (P), Gyroid (G), and wrapped package-graph (IWP) with different graded functions are presented. To predict the mechanical responses, a new fitting technique based on a two-phase piece-wise function is employed to evaluate the effective moduli of TPMS structures, including elastic modulus, shear modulus, and bulk modulus. In addition, this function corresponds to the cellular structure formulation in the context of relative density. The separated phases of the function are divided by the different deformation behaviors. Furthermore, another crucial mechanical property of porous structure, i.e, Poisson's ratio, is also achieved by a similar fitting technique. To verify the mechanical characteristics of the FG-TPMS plate, the generalized displacement field is modeled by a seventh-order shear deformation theory (SeSDT) and isogeometric analysis (IGA). Numerical examples regarding static, buckling, and free vibration analyses of FG-TPMS plates are illustrated to confirm the reliability and accuracy of the proposed approach. Consequently, these FG-TPMS structures can provide much higher stiffness than the same-weight isotropic plate. The greater stiffness-to-weight ratio of these porous plates compared to the full-weight isotropic ones should be considered the most remarkable feature. Thus, these complex porous structures have numerous practical applications because of these high ratios and their fabrication ability through additive manufacturing (AM) technology.Comment: 27 pages (including references), 15 figures, 12 table

    Self-adaptive Controllers for Renewable Energy Communities Based on Transformer Loading Estimation

    Get PDF
    In this paper, self-adaptive controllers for renewable energy communities based on data-driven approach are proposed to mitigate the voltage rise and transformer congestion at the community level. In the proposed approach, the transformer loading percentage is estimated by the trained data-driven model, which uses the extreme gradient boosting regression algorithm based on a measurement set acquired from critical coupling points of the communities. To avoid voltage rise issues, the droop control parameters (i.e., voltage threshold for P - V, Q - V curves) are adaptively tuned based on the solar irradiance availability and estimated transformer loading. The proposed approach has been tested in the IEEE European LV distribution network. Results showed that the control approach could effectively reduce 22.2 % of the total overloaded instances, while still keeping voltage magnitude in the operation range. This method can help DSOs manage voltage violation and congestion without further communication

    A convenient, optimized pipeline for isolation, fluorescence microscopy and molecular analysis of live single cells

    Get PDF
    BACKGROUND: Heterogeneity within cell populations is relevant to the onset and progression of disease, as well as development and maintenance of homeostasis. Analysis and understanding of the roles of heterogeneity in biological systems require methods and technologies that are capable of single cell resolution. Single cell gene expression analysis by RT-qPCR is an established technique for identifying transcriptomic heterogeneity in cellular populations, but it generally requires specialized equipment or tedious manipulations for cell isolation. RESULTS: We describe the optimization of a simple, inexpensive and rapid pipeline which includes isolation and culture of live single cells as well as fluorescence microscopy and gene expression analysis of the same single cells by RT-qPCR. We characterize the efficiency of single cell isolation and demonstrate our method by identifying single GFP-expressing cells from a mixed population of GFP-positive and negative cells by correlating fluorescence microscopy and RT-qPCR. CONCLUSIONS: Single cell gene expression analysis by RT-qPCR is a convenient means for investigating cellular heterogeneity, but is most useful when correlating observations with additional measurements. We demonstrate a convenient and simple pipeline for multiplexing single cell RT-qPCR with fluorescence microscopy which is adaptable to other molecular analyses

    Determination of pesticide multi-residues in green tea using a modified QuEChERS extraction and liquid chromatography tandem mass spectrometry technique

    Get PDF
    A modified QuEChERS method was developed and validated for determination of pesticide multi-residues in green tea by liquid chromatography tandem mass spectrometry. Lead acetate was first time used together with primary secondary amine and graphite carbon black to eliminate tannin, caffeine, and other pigments in tea and thus reduced the matrix effects. The method was compared to the original QuEChERS method as well as A.O.A.C. QuEChERS method. For accurate quantification, the matrix matched calibration technique was used. The method showed good performance in the concentration range from 0.01 to 1 mg kg–1. All pesticides could be quantified at and lower than 0.01 mg kg–1. Recoveries were from 70 to 120% and repeatabilities were <15% RSD depending on the compounds

    . In vitro propagation of the new orchid Dendrobium trankimianum T. Yukawa

    Get PDF
    Dendrobium trankimianum T. Yukawa is a beautiful, endemic orchid of Vietnam, a new species with a first - published description in 2004. It is very rare and expected to be added to the IUCN Red List status - CR. In vitro studies of orchid D. trankimianum T. Yukawa were conducted in order to conserve and increase the genetic pool of this precious wild orchid species. The results showed that full-strength MS medium supplemented with 2.0 mg/L BA and 0.5 mg/L NAA (10.24 PLBs/explant; 90.11% explants formed PLBs) or full-strength MS medium supplemented with 1.5 mg/L TDZ and 0.5 mg/L NAA (14.11 PLBs/explant; 92.06% explants formed PLBs) were the most suitable for protocorm formation. For subculture, suitable growth of shoots were obtained on full-strength MS medium supplemented 1.5 mg/L BA (22.35 shoots/explant; shoots length of 1.96 cm) and full-strength MS medium supplemented with 60 g ripe banana per liter (25.11 shoots/explant; shoots length of 2.12 cm). The shoots in vitro were transferred to half-strength MS supplemented with different concentrations of IAA, IBA and NAA to investigate root formation. The best rooting occurred at 0,5 mg/L NAA (7.91 roots/shoot; root length of 4.01 cm; 98.51% root formation). The plantlets with uniform growth were planted on different substrate: Eco clean soil, Coconut fiber, Fern fiber, 50% Rice husk in combination with 50% Eco clean soil for research the most suitable substrate. After 60 days of transplantion and acclimatization, the result showed that Fern fiber was suitable substrate for plantlet growth in a nursery garden (8.0 roots/ explant; root length of 5.5 cm; survival rate of 93.29%)
    corecore