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Abstract—This paper develops a new voltage stability monitor-
ing method using dynamic mode decomposition (DMD) and its
adaptive variance. First, state estimation (SE) is used to estimate
the voltage in the system. Then, the measured voltages from the
phasor measurement units (PMU) and estimations from SE are
used as the inputs for DMD to predict the long-term voltage
dynamic. Furthermore, to improve the prediction performance,
the normal DMD is improved by adaptively changing the size
of input samples based on the error in the training phase,
named adaptive DMD (ADMD). The effectiveness of the proposed
method is validated on the Nordic32 test system, which is recom-
mended as the test system for voltage stability studies. Different
contingency scenarios are used, and the results show that the
proposed method is able to monitor the voltage stability after
a disturbance (i.e., 4.3x10-4 MAPE for a stable case and 0.0041
MAPE for an unstable case). Furthermore, the results from a
scenario in which a real-world oscillation event is used show
high accuracy in voltage stability monitoring of the proposed
ADMD method.

Index Terms—Adaptive DMD, dynamic mode decomposition,
long-term voltage stability, voltage prediction.

I. INTRODUCTION

Voltage stability monitoring (VSM) is crucial for the re-
liable and secure operation of power systems [1]. Different
instability indicators, such as the sensitivity of total reactive
power generations to individual load reactive power or the
maximum eigenvalue of the inverse Jacobian matrix, have
been proposed in [2], [3] to assess voltage stability. However,
a lack of measurements in real-time operation hinders the
possibility of calculating the indicators mentioned above. To
address that issue, the works in [4], [5] tried reconstructing
unmonitored bus voltages in unobservable areas. In [4], a
hybrid power flow model has been proposed which combines
phasor measurement unit (PMU) and power flow equations
to increase observable voltage. Furthermore, the authors in
[5] proposed an early instability detection method based on
a state estimator with limited PMUs. To further improve
voltage instability detection, the concept of tracking network
state has been proposed in [6], where the Kalman filter is
used for voltage prediction. However, the method relied on
the assumption of having a network model and complete
system states, i.e., the voltage at unmeasured buses in real-
time operation.

The authors would like to acknowledge the financial support for this work
from the Enabling flexibility for future distribution grid project FlexiGrid (EC
funding number: 864048).

With increasing available data from PMUs, machine learn-
ing has been recently considered a promising method to
address the issue of requiring a full network model, as needed
for the above methods. In [7], a massively parallel dynamic
security assessment is proposed based decision tree (DT)
method. Based on high-performance computing, massively
contingency scenarios are generated; thus, the DT method is
used for post-fault analysis and learning security rules, which
are then applied for real-time operation. Similarly, authors in
[8] presented a deep recurrent neural network for long-term
voltage instability prediction. Approximately 140,000 training
scenarios are created, including N-1 and N-1-1 contingencies
for the training model. Those model-free methods show high
prediction accuracy. However, the overall prediction perfor-
mance highly depends on the set of training samples (i.e.,
the training set should cover all possible instability scenarios),
which is limited for online applications (i.e., the model needs
to be trained again when the system changes or new devices
are added). Furthermore, the mentioned methods can only
predict instability situations. This information is insufficient
for the control tasks, where voltage evolution is required [9].

To tackle the mentioned limitations, we propose a new
method based on dynamic model decomposition (DMD) for
long-term voltage prediction. The DMD has been applied in
the power system for global oscillation analysis [10], dynamic
state reconstruction [11], and short-term load forecasting [12],
to name a few. This paper combines the DMD with the static
state estimation (SE) to predict long-term voltage evolution.
Overall, the main contributions of this paper are as follows:

• The normal DMD is improved with an adaptive training
sample input, named ADMD, which can enhance the
prediction performance;

• The proposed method does not require any offline training
or system model, thus reducing the computational burden
and complexity when applied to large power systems;

• This work enhances the connection between the SE and
the VSM, which can track and monitor long-term voltage
dynamics after a disturbance.

The Nordic32 system and a real-world event in ISO New
England are used to evaluate the proposed method. The numer-
ical results showed that the proposed method could accurately
predict long-term voltage evolution with high accuracy.



Fig. 1: The outline of the proposed approach.
II. PROPOSED METHOD FOR VSM

This section presents the outline of our proposed VSM,
which is presented in Fig. 1. It aims to capture long-term
voltage dynamics after a disturbance. It is worth noting that
the short-term dynamic is not tracked and is assumed to be
stable. The underlying idea is summarized below:

• First, similar to the previous works [4], [5], unmeasured
bus voltages are estimated using SE. The traditional
weighted least square (WLS) is used for the SE model;

• Second, the system voltages (i.e., the estimated voltage
from SE and the measured voltage from PMUs) are
constructed to two sequential overlapping voltage profiles
in the last seconds X1 and X2. Then, the ADMD method
is used to learn the dynamic voltage of the underlying
system, which is then used to predict the dynamic voltage
evolution V (t) in the future.

The details are explained in the following sections.
A. Static State Estimation

The SE algorithm is a data processing given by a set of
measurements to estimate the system state. The measurement
function is as follows:

z = h(x) + e (1)

where, z is measurement vector, h(x) is vector of function
measurement of state vector x, and e is measurement error
vector. The measurement errors are assumed to be independent
zero-mean Gaussian variables, and vector R is the covariance
matrix of e. To solve Eq. (1), the widely used WLS is
implemented, and the objective is to minimize the sum of the
square of the residuals.

J (x) = [z − h(x)]
T
R−1[z − h(x)] (2)

Solving the first-order optimality condition of Eq. (2) equal
zero will give the x value, which satisfies the minimum value
of objective function J(x). It is given by:

g (x) =
∂J(x)

∂x
= −HT (x)R−1 [z − h (x)] = 0 (3)

where:
H (x) =

∂h(x)

∂x
(4)

The Gauss-Newton method is used to linearize the function,
giving the result at the kth iterative as follows Eq. (5). The
iterative continues until the given convergence criteria are
satisfied.

xk = xk−1 +G
(
xk

)−1
H

(
xk

)T
R−1 [z − h (x)] (5)

where G(x) is gain matrix.

G
(
xk

)
= H(xk)

T
R−1H(xk) (6)

B. Dynamic Mode Decomposition based Prediction

1) Dynamic Mode Decomposition: Consider a discrete dy-
namical system sampled at every ∆t in time:

xk+1 = Axk, (7)

where A ∈ Rn×n is the dynamic matrix which is mapping the
snapshot xk ∈ Rn at time k to the next snapshot xk+1 ∈ Rn

at time k + 1.
The solution to this system can be expressed as:

xk+1 =

n∑
j=1

ϕjλ
k
j bj , (8)

where λj and ϕj are eigenvalues and eigenvectors of dynamic
matrix A. bj is the initial magnitude of each eigenvector ϕj .

Thus, the time-domain of x(t) can be calculated using the
eigenvalue and eigenvector of matrix A:

x(t) =

n∑
j=1

ϕje
ωjtbj = ΦeΩtb, (9)

where Φ ∈ Cn×n is the right eigenvector matrix of matrix A.
Ω = diag(ω) is a diagonal matrix that contains eigenvalue
ωj , where ωj = ln(λj)/∆t showing the relationship between
the discrete and continuous eigenvalue. b = Φ†x1 is a
vector of coefficients bj , where Φ† denotes the Moore-Penrose
pseudoinverse of Φ.

The DMD method can be used to identify eigenvector
matrix Φ, eigenvalue matrix Λ, and the coefficient matrix b
for a set of the measurement values.

Having two data matrices X1 ∈ Rn×(m−1) and X2 ∈
Rn×(m−1) contain n states which are collected at m − 1
snapshots with constant time-interval ∆t as follows:

X1 =

 x1 x2 . . . xm−1

 , (10)

X2 =

 x2 x3 . . . xm

 , (11)

where the matrix X2 is time-shifted of the matrix X1. Then,
the Eq. (7) can also be written as follows:

X2 = AX1. (12)

The matrix A can be defined by the following:

A = X2(X1)
†. (13)

Normally, the matrix X1 and X2 are large-size matrices; thus,
the singular value decomposition (SVD) is applied to improve
computationally. Hence, the SVD of X1 is:

X1 = UΣV∗ ≈ UrΣrV
∗
r , (14)



where U ∈ Rn×n, Σ ∈ Rn×(m−1), and V∗ ∈ R(m−1)×(m−1)

(∗ denotes the complex conjugate transpose). For the matrix
reduction, a rank r will be chosen, which keeps the most
dominant modes in the SVD; see [13] for choosing r methods.
Thus, Ur ∈ Rn×r, Σr ∈ Rr×r, and Vr

∗ ∈ Rr×(m−1) contain
the first r singular values.

Substituting Eq. (14) into Eq. (13), the matrix A can be
expressed as follows:

A ≈ X2(UrΣrV
∗
r)

† = X2(VrΣ
−1
r U∗

r), (15)

where Ur and Vr are unitary matrices (i.e., Ur ∗Ur = I and
Vr ∗Vr = I). Then, the reduced-order dynamic matrix Ar ∈
Rr×r can be calculated by projecting A onto Ur basis:

Ar = U∗
rAUr = U∗

rX2VrΣ
−1
r . (16)

Applying the eigendecomposition to the reduced-order matrix
Ar, we have:

ArW = WΛ, (17)

where the eigenvectors are the columns of matrix W ∈ Cr×r,
and the eigenvalues are the diagonal entries of matrix Λ ∈
Cr×r. In the DMD, the relationship between matrices Ar and
A is proved in [14], showing that the eigenvalues of the two
matrices are equivalent, and the eigenvectors are related via
a linear transformation. Thus, the eigenvectors Φ ∈ Cn×r of
the original dynamic matrix A can be recovered by:

Φ = UrW. (18)

Furthermore, the vector of coefficients b ∈ Cr×1 is computed:

b = Φ†x1. (19)

Finally, the time-domain response of x(t) in Eq. (9) can be
predicted using eigenvector and coefficients value from Eq.
(18) and Eq. (19).

2) DMD with Hankel Matrix: In this section, the idea of
the Hankel matrix is used to improve the learning of the DMD
method. In case of fewer input measurement states or recorded
snapshots, the data matrix X is shift-stacking to increase the
dimension of the measurement matrix, which helps to capture
the dynamic relationship between different time steps [14].
The Hankel matrix is constructed as follows:

H =


x1 x2 . . . xm−(s−1)

x2 x3 . . . xm−(s−2)

...
...

. . .
...

xs xs+1 . . . xm

 , (20)

where H ∈ R(n∗s)×(m−s+1), and s is the number of stacking
time. Then, the Hankel matrix is separated into two overlap-
ping matrices:

X1
H = H(:, 1 : m− s), and (21)

X2
H = H(:, 2 : m− s+ 1). (22)

This two matrices are used to replace X1,X2 in Eq. 12.

Fig. 2: The proposed adaptive dynamic mode decomposition.

3) Adaptive Dynamic Mode Decomposition: As discussed
in the previous section, the DMD’s idea is to learn the
underlying dynamic system based on a set of measurements
in time. The dynamic matrix A in Eq. (7) shows the linear
mapping between the snapshot xk and xk+1. Furthermore, the
dynamic matrix A is changing in time, corresponding to the
natural or forced responses. Thus, the dynamic matrix A needs
to capture the right current dynamic response of the system.
Therefore, this work proposed an adaptive DMD to improve
the learning phase of DMD, which result in higher prediction
performance. The proposed ADMD method is in Fig. 2 is
explained as follows:

• At the time step t0, m voltage snapshots from t0− tm to
t0 are collected as the input for the DMD. After that, the
voltage, V train calculated using the Eq. (9), is compared
with V true by the RMSE indicator;

• If the RMSE is larger than a predefined ∆V , the training
samples will be shorten, i.e., mnew = m − ∆m. This
means that more recent data will be used to learn the
dynamic matrix A.

The above concept is repeated (moving) in time. Thus, the
dynamic voltage evolution is predicted with higher accuracy.

III. SIMULATION RESULTS AND DISCUSSION

In this section, different case studies have been investigated
to evaluate the proposed methods’ performance. The Nordic32
test system is used to validate the proposed method in the
first and second cases. This system was specifically developed
for voltage stability analysis as the IEEE PES Task Force
recommended a ”Test system for voltage stability analysis
and security assessment” [15]. Then, in the third case, a real-
world voltage oscillation event is used to see how the method
performs with a real-world event.
A. Testing with The Nordic32 System

This case study presents the implementation of the pro-
posed method on the Nordic32 test system. This system is
recommended for voltage stability studies [15], [16], which
has 20 machines and 52 buses. Each generator includes its
dynamic models. Loads are modeled as an exponential model
with the constant current for the active power and constant
admittance for the reactive power. It is worth mentioning



that the induction motors are not modeled in this study as
their electromagnetic transient can be neglected in long-term
voltage stability analysis. Transformers are equipped with a
load tap changer (LTC), with a delay of 30 seconds for the first
tap action (i.e., a shorter delay on the following tap actions,
different for different transformers). The setup of measurement
location is based on the work in [5] (i.e., 7-PMU for complex
voltage measurements, 72 power injection measurements, 20
zero injection measurements, see Ref. [5] for more details).

1) Case 1- Stable voltage: In this case study, an identical
generator with the generator g16 is added to the same bus (i.e.,
bus 4051), which increases the total active power injection at
bus 4051 to 1200 MW. Then, a three-phase fault on line 4032-
4044 is applied. To isolate the fault, this line is open (after
0.1 s). After the short-term period (i.e., 0.25 s), the voltage
of 52 buses is collected with the total samples of m = 500,
which is used for ADMD. The threshold for training phase
∆V is selected as 0.001, and the ∆m = 50 is considered
for the ADMD. Once the eigenvector and coefficients value
from Eq. (18) and Eq. (19) are obtained, the time-domain
voltages evolution in the next 30 samples are predicted by
Eq. (9). In Fig. 3, voltage evolution at bus 4062 is predicted
using DMD and ADMD methods. In general, both methods
accurately predict the voltage. However, at t = 32 seconds,
where the LTC is activated, the normal DMD failed to predict
the voltage. The corresponding percentage error of the two
methods compared with the true value is plotted in the bottom
sub-figure of Fig. 3. It clearly shows the performance of the
proposed ADMD in this stable case after the fault.

2) Case 2- Unstable voltage: Unlike the previous case, this
second case study considers a voltage unstable after the same
fault as case 1. One generator with a capacity of 600 MW
is disconnected from bus 4051. After the fault, the system is
short-term stable. However, due to the effect of LTCs and
OELs, the system gets unstable in long-term (the detailed
explanation can be seen from [15]). Similarly, the voltage
evolution at bus 4062 is shown in Fig. 4. It can be seen the
sub-figure in the middle, at t = 65 seconds, the DMD failed
to predict the voltage due to the control response of OELs or
LTCs. However, the proposed ADMD with adaptive training
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Fig. 3: The voltage evolution prediction using normal DMD
and ADMD methods.
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Fig. 4: The voltage evolution prediction using normal DMD
and ADMD methods.

samples can achieve better results with a maximum percentage
error of around 0.03%, which can be seen from the bottom
sub-figure. It again confirms the performance of the ADMD
in VSM, even with an unstable voltage situation.

B. A Real-world Event in ISO New England

In this section, a real oscillation event in ISO New England
is used to test our method. This is a disturbance in a large
generator on July 20, 2017. The detail of the event and
recorded data can be found in [17].

1) Case 3- Voltage oscillation in ISO New England: There
are 3 minutes of recorded data from PMUs. In this case, other
grid information (i.e., grid topology and grid parameters are
unknown). Thus, the measurement voltage data from PMUs
are used directly to the ADMD model without SE. In total, 18
voltage states are used. Other settings are the same as in the
previous cases, i.e., m = 500, ∆V = 0.001, and ∆m = 50.
The voltage at one of the buses is predicted as shown in Fig.
5. It can be seen that at the time t = 50 seconds, both methods
cannot predict the right voltage evolution due to an unknown
force in the system. However, the ADMD obtained very good
accuracy, with a maximum error of around 0.01%.
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C. Accuracy Indices

To evaluate the overall accuracy of long-term voltage
prediction for the whole system, two indicators have been
considered:

MAPE =
1

M

M∑
k=1

1

N

N∑
i=1

|V pred
ik − V true

ik |
V true
ik

, (23)

RMSE =
1

M

M∑
k=1

√√√√ N∑
i=1

(V pred
ik − V true

ik )2

N
, (24)

where V pred
ik is the predicted voltage value of bus i at snapshot

k either by the normal DMD or our proposed adaptive DMD,
V true
ik is the voltage value of bus i at snapshot k from time

domain simulation (i.e., with the Nordic32 test system) or real
collected data (i.e., with ISO New England). M is number of
snapshot and N is the number of predicted voltage buses (i.e.,
N = 52 for the Nordic32 test system, and N = 18 for the
ISO New England).

The values of mean absolute percentage error (MAPE) and
root mean square error (RMSE) indices are given in Table I. It
can be seen that both methods obtained good prediction results
in case 1 (i.e., the stable system). Furthermore, the proposed
ADMD method shows an improved prediction result compared
with the normal DMD. In case 2 of the long-term voltage
instability, the ADMD method is around 6 and 5 times better
than normal DMD with the MAPE and RMSE indicators,
respectively. Similarly, the ADMD shows a better prediction
result for the real event in ISO New England.

Furthermore, the eigenvalue Λ obtained from the dynamic
matrix Ar in Eq. 17 are shown in Fig. 6. This corresponds
to case 2, the unstable voltage case of the Nordic32 system.
Following the voltage at bus 4041, the eigenvalue of dynamic

TABLE I: Comparison of DMD and ADMD methods

Indicator Case 1 Case 2 Case 3
MAPE-DMD 5.8× 10−4 0.0248 0.0007

MAPE-ADMD 4.3× 10−4 0.0041 0.0004
RMSE-DMD 3.9× 10−4 0.0285 0.1909

RMSE-ADMD 1.9× 10−4 0.0051 0.1062
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Fig. 6: Eigenvalue tracking along with voltage evolution. The
top sub-figure is the voltage at bus 4041 in case 2. The bottom
sub-figures from left to right are the eigenvalue plots of areas
1, 2, and 3, respectively.

matrix Ar corresponding to areas 1, 2, and 3 are plotted in the
unit circle. It clearly shows the moving of eigenvalues from
inside the unit circle (in area 1) to the near unit circle (in area
2) and outside of the circle (in area 3). It confirms that the
dynamic matrix Ar has the right property of system response.

IV. CONCLUSIONS

A method for voltage stability monitoring based on adaptive
dynamic mode decomposition (ADMD) has been proposed
in this paper. The ADMD is used to learn the dynamic
response of voltages. Then, the voltage evolution is predicted
using the learned dynamic model. The simulation results of
different scenarios with the Nordic32 system and a real-
world oscillation event verify the high-accuracy performance
of the proposed method in dynamic voltage prediction. Unlike
the conventional DMD method, the proposed ADMD with
adaptive training samples is able to predict both stable and
unstable evolutions of the voltage, as well as the voltage
dynamic as a result of the control response of OELs or LTCs.
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