77 research outputs found

    The Dynamics of Silica Melts under High Pressure: Mode-Coupling Theory Results

    Full text link
    The high-pressure dynamics of a computer-modeled silica melt is studied in the framework of the mode-coupling theory of the glass transition (MCT) using static-structure input from molecular-dynamics (MD) computer simulation. The theory reproduces the experimentally known viscosity minimum (diffusivity maximum) as a function of density or pressure and explains it in terms of a corresponding minimum in its critical temperature. This minimum arises from a gradual change in the equilibrium static structure which shifts from being dominated by tetrahedral ordering to showing the cageing known from high-density liquids. The theory is in qualitative agreement with computer simulation results.Comment: Presented at ESF EW Glassy Liquids under Pressure, to be published in Journal of Physic

    A Double-Transition Scenario for Anomalous Diffusion in Glass-Forming Mixtures

    Full text link
    We study by molecular dynamics computer simulation a binary soft-sphere mixture that shows a pronounced decoupling of the species' long-time dynamics. Anomalous, power-law-like diffusion of small particles arises, that can be understood as a precursor of a double-transition scenario, combining a glass transition and a separate small-particle localization transition. Switching off small-particle excluded-volume constraints slows down, rather than enhances, small-particle transport. The data are contrasted with results from the mode-coupling theory of the glass transition

    Sequencing Chess

    Get PDF
    We analyze the structure of the state space of chess by means of transition path sampling Monte Carlo simulation. Based on the typical number of moves required to transpose a given configuration of chess pieces into another, we conclude that the state space consists of several pockets between which transitions are rare. Skilled players explore an even smaller subset of positions that populate some of these pockets only very sparsely. These results suggest that the usual measures to estimate both, the size of the state space and the size of the tree of legal moves, are not unique indicators of the complexity of the game, but that topological considerations are equally important

    Equations of structural relaxation

    Full text link
    In the mode coupling theory of the liquid to glass transition the long time structural relaxation follows from equations solely determined by equilibrium structural parameters. The present extension of these structural relaxation equations to arbitrarily short times on the one hand allows calculations unaffected by model assumptions about the microscopic dynamics and on the other hand supplies new starting points for analytical studies. As a first application, power-law like structural relaxation at a glass-transition singularity is explicitly proven for a special schematic MCT model.Comment: 11 pages, 3 figures; talk given at the Seventh international Workshop on disordered Systems, Molveno, Italy, March 199

    Tagged-particle dynamics in a hard-sphere system: mode-coupling theory analysis

    Full text link
    The predictions of the mode-coupling theory of the glass transition (MCT) for the tagged-particle density-correlation functions and the mean-squared displacement curves are compared quantitatively and in detail to results from Newtonian- and Brownian-dynamics simulations of a polydisperse quasi-hard-sphere system close to the glass transition. After correcting for a 17% error in the dynamical length scale and for a smaller error in the transition density, good agreement is found over a wide range of wave numbers and up to five orders of magnitude in time. Deviations are found at the highest densities studied, and for small wave vectors and the mean-squared displacement. Possible error sources not related to MCT are discussed in detail, thereby identifying more clearly the issues arising from the MCT approximation itself. The range of applicability of MCT for the different types of short-time dynamics is established through asymptotic analyses of the relaxation curves, examining the wave-number and density-dependent characteristic parameters. Approximations made in the description of the equilibrium static structure are shown to have a remarkable effect on the predicted numerical value for the glass-transition density. Effects of small polydispersity are also investigated, and shown to be negligible.Comment: 20 pages, 23 figure

    Crystal Growth in Fluid Flow: Nonlinear Response Effects

    Full text link
    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends non-monotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.Comment: to appear in Phys. Rev. Material

    Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation

    Full text link
    We analyze the slow, glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory of the glass transition (MCT). Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multi-component calculation, but qualitative disagreement at small qq when the system is treated as effectively monodisperse. The origin of the different small-qq behaviour is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor, and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantiative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behaviour are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.Comment: 23 pages, 26 figure

    Relaxation Scenarios in a Mixture of Large and Small Spheres: Dependence on the Size Disparity

    Get PDF
    We present a computational investigation on the slow dynamics of a mixture of large and small soft spheres. By varying the size disparity at a moderate fixed composition different relaxation scenarios are observed for the small particles. For small disparity density-density correlators exhibit moderate stretching. Only small quantitative differences are observed between dynamic features for large and small particles. On the contrary, large disparity induces a clear time scale separation between the large and the small particles. Density-density correlators for the small particles become extremely stretched, and display logarithmic relaxation by properly tuning the temperature or the wavevector. Self-correlators decay much faster than density-density correlators. For very large size disparity, a complete separation between self- and collective dynamics is observed for the small particles. Self-correlators decay to zero at temperatures where density-density correlations are frozen. The dynamic picture obtained by varying the size disparity resembles features associated to Mode Coupling transition lines of the types B and A at, respectively, small and very large size disparity. Both lines might merge, at some intermediate disparity, at a higher-order point, to which logarithmic relaxation would be associated. This picture resembles predictions of a recent Mode Coupling Theory for fluids confined in matrixes with interconnected voids [V. Krakoviack, Phys. Rev. Lett. {\bf 94}, 065703 (2005)].Comment: Journal of Chemical Physics 125, 164507 (2006

    Long-Wavelength Anomalies in the Asymptotic Behavior of Mode-Coupling Theory

    Full text link
    We discuss the dynamic behavior of a tagged particle close to a classical localization transition in the framework of the mode-coupling theory of the glass transition. Asymptotic results are derived for the order parameter as well as the dynamic correlation functions and the mean-squared displacement close to the transition. The influence of an infrared cutoff is discussed.Comment: 15 pages, 8 figures, to appear in J Phys Condens Matte
    • …
    corecore