125 research outputs found
Sub-Hz line width diode lasers by stabilization to vibrationally and thermally compensated ULE Fabry-Perot cavities
We achieved a 0.5 Hz optical beat note line width with ~ 0.1 Hz/s frequency
drift at 972 nm between two external cavity diode lasers independently
stabilized to two vertically mounted Fabry-Perot (FP) reference cavities.
Vertical FP reference cavities are suspended in mid-plane such that the
influence of vertical vibrations to the mirror separation is significantly
suppressed. This makes the setup virtually immune for vertical vibrations that
are more difficult to isolate than the horizontal vibrations. To compensate for
thermal drifts the FP spacers are made from Ultra-Low-Expansion (ULE) glass
which possesses a zero linear expansion coefficient. A new design using Peltier
elements in vacuum allows operation at an optimal temperature where the
quadratic temperature expansion of the ULE could be eliminated as well. The
measured linear drift of such ULE FP cavity of 63 mHz/s was due to material
aging and the residual frequency fluctuations were less than 40 Hz during 16
hours of measurement. Some part of the temperature-caused drift is attributed
to the thermal expansion of the mirror coatings. High-frequency thermal
fluctuations that cause vibrations of the mirror surfaces limit the stability
of a well designed reference cavity. By comparing two similar laser systems we
obtain an Allan instability of 2*10-15 between 0.1 and 10 s averaging time,
which is close to the theoretical thermal noise limit.Comment: submitted to Applied Physics
Frequency Metrology on single trapped ions in the weak binding limit: The 3s1/2-3p3/2 transition in 24-Mg+
We demonstrate a method for precision spectroscopy on trapped ions in the
limit of unresolved motional sidebands. By sympathetic cooling of a chain of
crystallized ions we suppress adverse temperature variations induced by the
spectroscopy laser that usually lead to a distorted line profle and obtain a
Voigt profile with negligible distortions. We applied the method to measure the
absolute frequency of the astrophysically relevant D2 transition in single
24-Mg+ ions and find 1072082934.33(16)MHz, a nearly 400fold improvement over
previous results. Further, we find the excited state lifetime to be 3.84(10)
ns.Comment: 4 pages, 5 figure
Injection Locking of a Trapped-Ion Phonon Laser
We report on injection locking of optically excited mechanical oscillations of a single, trapped ion. The injection locking dynamics are studied by analyzing the oscillator spectrum with a spatially selective Fourier transform technique and the oscillator phase with stroboscopic imaging. In both cases we find excellent agreement with theory inside and outside the locking range. We attain injection locking with forces as low as 5(1)×10^(-24)  N so this system appears promising for the detection of ultraweak oscillating forces
Interference of an array of atom lasers
We report on the observation of interference of a series of atom lasers. A
comb-like array of coherent atomic beams is generated by outcoupling atoms from
distinct Bose-Einstein condensates confined in the independent sites of a
mesoscopic optical lattice. The observed interference signal arises from the
spatial beating of the overlapped atom laser beams, which is sampled over a
vertical region corresponding to 2 ms of free fall time. The average relative
de Broglie frequency of the atom lasers was measured.Comment: 3 figure
Sub-milliKelvin spatial thermometry of a single Doppler cooled ion in a Paul trap
We report on observations of thermal motion of a single, Doppler-cooled ion
along the axis of a linear radio-frequency quadrupole trap. We show that for a
harmonic potential the thermal occupation of energy levels leads to Gaussian
distribution of the ion's axial position. The dependence of the spatial thermal
spread on the trap potential is used for precise calibration of our imaging
system's point spread function and sub-milliKelvin thermometry. We employ this
technique to investigate the laser detuning dependence of the Doppler
temperature.Comment: 5 pages, 4 figure
Testing the Dirac equation
The dynamical equations which are basic for the description of the dynamics
of quantum felds in arbitrary space--time geometries, can be derived from the
requirements of a unique deterministic evolution of the quantum fields, the
superposition principle, a finite propagation speed, and probability
conservation. We suggest and describe observations and experiments which are
able to test the unique deterministic evolution and analyze given experimental
data from which restrictions of anomalous terms violating this basic principle
can be concluded. One important point is, that such anomalous terms are
predicted from loop gravity as well as from string theories. Most accurate data
can be obtained from future astrophysical observations. Also, laboratory tests
like spectroscopy give constraints on the anomalous terms.Comment: 11 pages. to appear in: C. L\"ammerzahl, C.W.F. Everitt, and F.W.
Hehl (eds.): Gyros, Clocks, Interferometers...: Testing Relativistic Gravity
in Space, Lecture Notes in Physics 562, Springer 200
Optical clocks based on ultra-narrow three-photon resonances in alkaline earth atoms
A sharp resonance line that appears in three-photon transitions between the
and states of alkaline earth and Yb atoms is proposed
as an optical frequency standard. This proposal permits the use of the even
isotopes, in which the clock transition is narrower than in proposed clocks
using the odd isotopes and the energy interval is not affected by external
magnetic fields or the polarization of trapping light. The method has the
unique feature that the width and rate of the clock transition can be
continuously adjusted from the level to sub- without loss of signal
amplitude by varying the intensities of the three optical beams. Doppler and
recoil effects can be eliminated by proper alignment of the three optical beams
or by point confinement in a lattice trap. The three beams can be mixed to
produce the optical frequency corresponding to the -
clock interval.Comment: 10 pages, 4 figures, submitted to PR
Precision spectroscopy of the 3s-3p fine structure doublet in Mg+
We apply a recently demonstrated method for precision spectroscopy on strong
transitions in trapped ions to measure both fine structure components of the
3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference
data for transition frequencies, isotope shifts and fine structure splittings
that are in particular useful for comparison with quasar absorption spectra,
which test possible space-time variations of the fine structure constant. The
measurement accuracy improves previous literature values, when existing, by
more than two orders of magnitude
Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel
We investigate a new scheme for astronomical spectrograph calibration using
the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our
concept is based upon a single-mode fiber channel, that simultaneously feeds
the spectrograph with comb light and sunlight. This yields nearly perfect
spatial mode matching between the two sources. In combination with the absolute
calibration provided by the frequency comb, this method enables extremely
robust and accurate spectroscopic measurements. The performance of this scheme
is compared to a sequence of alternating comb and sunlight, and to absorption
lines from Earth's atmosphere. We also show how the method can be used for
radial-velocity detection by measuring the well-explored 5-minute oscillations
averaged over the full solar disk. Our method is currently restricted to solar
spectroscopy, but with further evolving fiber-injection techniques it could
become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on
youtube. For watching the video, please follow
https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also
available for streaming and download on the related article website of New
Journal of Physic
An ion-trap phonon laser
Cooling of atoms and ions using a red-detuned laser has had a profound impact on science and technology. In this work simultaneous laser cooling and blue-detuned laser pumping of a Mg+ ion in a Paul trap is studied. Blue-detuned pumping is conventionally referred to as the heating regime, and in early work, remarkably complex behaviors (bistability and limit cycles) have been associated with this regime. These behaviors have so far not been fully explained. Here, it is shown that blue-detuned pumping, as opposed to heating, causes stimulated emission of center-of-mass phonons, leading to coherent oscillatory motion of the ion in analogy with a laser. Mechanical amplification is calculated as well as the threshold pumping condition for oscillation. A single ion in a linear radio-frequency trap is studied to verify these predictions. Blue-detuned pumping of the magnesium D2 transition at 279.6 nm provides amplification along the long axis of the ion trap so as to excite only axial oscillations. A slightly off-axis, red-detuned beam cools the center-of-mass motion to approximately 1 mK
- …