810 research outputs found

    Exploitation of endophytes for sustainable agricultural intensification

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere – a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems.Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council (BBSRC), and we acknowledge funding from the BBSRC Institute Strategic Programme Grant (ISPG), ‘Optimization of nutrients in soil–plant systems’ (BBS/E/C/0005196)

    Bounds and Inequalities Relating h-Index, g-Index, e-Index and Generalized Impact Factor

    Get PDF
    Finding relationships among different indices such as h-index, g-index, e-index, and generalized impact factor is a challenging task. In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them.Comment: 17 pages, 6 figures, 5 table

    Thermoelectric properties of the degenerate Hubbard model

    Full text link
    We investigate the thermoelectric properties of a system near a pressure driven Mott-Hubbard transition. The dependence of the thermopower and the figure of merit on pressure and temperature within a degenerate Hubbard model for integer filling n=1 is calculated using dynamical mean field theory. Quantum Monte Carlo method is used to solve the impurity model. Obtained results can qualitatively explain thermoelectric properties of various strongly correlated materials.Comment: RevTex, 7 pages, 6 figure

    ARPES Spectra of the Hubbard model

    Full text link
    We discuss spectra calculated for the 2D Hubbard model in the intermediate coupling regime with the dynamical cluster approximation, which is a non-perturbative approach. We find a crossover from a normal Fermi liquid with a Fermi surface closed around the Brillouin zone center at large doping to a non-Fermi liquid for small doping. The crossover is signalled by a splitting of the Fermi surface around the XX point of the 2D Brillouin zone, which eventually leads to a hole-like Fermi surface closed around the point M. The topology of the Fermi surface at low doping indicates a violation of Luttinger's theorem. We discuss different ways of presenting the spectral data to extract information about the Fermi surface. A comparison to recent experiments will be presented.Comment: 8 pages, 7 color figures, uses RevTeX

    Computational Complexity of Iterated Maps on the Interval (Extended Abstract)

    Full text link
    The exact computation of orbits of discrete dynamical systems on the interval is considered. Therefore, a multiple-precision floating point approach based on error analysis is chosen and a general algorithm is presented. The correctness of the algorithm is shown and the computational complexity is analyzed. As a main result, the computational complexity measure considered here is related to the Ljapunow exponent of the dynamical system under consideration

    A Quantum Monte Carlo algorithm for non-local corrections to the Dynamical Mean-Field Approximation

    Full text link
    We present the algorithmic details of the dynamical cluster approximation (DCA), with a quantum Monte Carlo (QMC) method used to solve the effective cluster problem. The DCA is a fully-causal approach which systematically restores non-local correlations to the dynamical mean field approximation (DMFA) while preserving the lattice symmetries. The DCA becomes exact for an infinite cluster size, while reducing to the DMFA for a cluster size of unity. We present a generalization of the Hirsch-Fye QMC algorithm for the solution of the embedded cluster problem. We use the two-dimensional Hubbard model to illustrate the performance of the DCA technique. At half-filling, we show that the DCA drives the spurious finite-temperature antiferromagnetic transition found in the DMFA slowly towards zero temperature as the cluster size increases, in conformity with the Mermin-Wagner theorem. Moreover, we find that there is a finite temperature metal to insulator transition which persists into the weak-coupling regime. This suggests that the magnetism of the model is Heisenberg like for all non-zero interactions. Away from half-filling, we find that the sign problem that arises in QMC simulations is significantly less severe in the context of DCA. Hence, we were able to obtain good statistics for small clusters. For these clusters, the DCA results show evidence of non-Fermi liquid behavior and superconductivity near half-filling.Comment: 25 pages, 15 figure

    Localized Exotic Smoothness

    Full text link
    Gompf's end-sum techniques are used to establish the existence of an infinity of non-diffeomorphic manifolds, all having the same trivial R4{\bf R^4} topology, but for which the exotic differentiable structure is confined to a region which is spatially limited. Thus, the smoothness is standard outside of a region which is topologically (but not smoothly) B3×R1{\bf B^3}\times {\bf R^1}, where B3{\bf B^3} is the compact three ball. The exterior of this region is diffeomorphic to standard R1×S2×R1{\bf R^1}\times {\bf S^2}\times{\bf R^1}. In a space-time diagram, the confined exoticness sweeps out a world tube which, it is conjectured, might act as a source for certain non-standard solutions to the Einstein equations. It is shown that smooth Lorentz signature metrics can be globally continued from ones given on appropriately defined regions, including the exterior (standard) region. Similar constructs are provided for the topology, S2×R2{\bf S^2}\times {\bf R^2} of the Kruskal form of the Schwarzschild solution. This leads to conjectures on the existence of Einstein metrics which are externally identical to standard black hole ones, but none of which can be globally diffeomorphic to such standard objects. Certain aspects of the Cauchy problem are also discussed in terms of RΘ4{\bf R^4_\Theta}\models which are ``half-standard'', say for all t<0,t<0, but for which tt cannot be globally smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2

    The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties

    Full text link
    We present results on thermodynamic quantities, resistivity and optical conductivity for the Hubbard model on a simple hypercubic lattice in infinite dimensions. Our results for the paramagnetic phase display the features expected from an intuitive analysis of the one-particle spectra and substantiate the similarity of the physics of the Hubbard model to those of heavy fermion systems. The calculations were performed using an approximate solution to the single-impurity Anderson model, which is the key quantity entering the solution of the Hubbard model in this limit. To establish the quality of this approximation we compare its results, together with those obtained from two other widely used methods, to essentially exact quantum Monte Carlo results.Comment: 29 pages, 16 figure

    Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions

    Full text link
    An essentially exact solution of the infinite dimensional Hubbard model is made possible by using a self-consistent mapping of the Hubbard model in this limit to an effective single impurity Anderson model. Solving the latter with quantum Monte Carlo procedures enables us to obtain exact results for the one and two-particle properties of the infinite dimensional Hubbard model. In particular we find antiferromagnetism and a pseudogap in the single-particle density of states for sufficiently large values of the intrasite Coulomb interaction at half filling. Both the antiferromagnetic phase and the insulating phase above the N\'eel temperature are found to be quickly suppressed on doping. The latter is replaced by a heavy electron metal with a quasiparticle mass strongly dependent on doping as soon as n<1n<1. At half filling the antiferromagnetic phase boundary agrees surprisingly well in shape and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page

    Coulomb Parameter U and Correlation Strength in LaFeAsO

    Full text link
    First principles constrained density functional theory scheme in Wannier functions formalism has been used to calculate Coulomb repulsion U and Hund's exchange J parameters for iron 3d electrons in LaFeAsO. Results strongly depend on the basis set used in calculations: when O-2p, As-4p, and Fe-3d orbitals and corresponding bands are included, computation results in U=3-4 eV, however, with the basis set restricted to Fe-3d orbitals and bands only, computation gives parameters corresponding to F^0=0.8 eV, J=0.5 eV. LDA+DMFT (the Local Density Approximation combined with the Dynamical Mean-Field Theory) calculation with this parameters results in weakly correlated electronic structure that is in agreement with X-ray experimental spectra
    • …
    corecore