35 research outputs found

    Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level

    Get PDF
    Background: The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results: We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions: P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength

    P2 purinergic receptor modulation of cytokine production

    Get PDF
    Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y6 receptor mediated impact on interleukin (IL)-8 production, (2) P2Y11 receptor-mediated affects on IL-12/23 output, and (3) P2X7 receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases

    Aggregation of Cat Platelets in Vitro

    No full text

    Effect of Congo Red on Blood Platelets and Leucocytes of Rabbits and Cats

    No full text

    Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis

    No full text
    Methamphetamine [METH (“speed”)] is an abused psychostimulant that can cause psychotic, cognitive, and psychomotor impairment in humans. These signs and symptoms are thought to be related to dysfunctions in basal ganglionic structures of the brain. To identify possible molecular bases for these clinical manifestations, we first used cDNA microarray technology to measure METH-induced transcriptional responses in the striatum of rats treated with an apoptosis-inducing dose of the drug. METH injection resulted in increased expression of members of the Jun, Egr, and Nur77 subfamilies of transcription factors (TFs), changes that were confirmed by quantitative PCR. Because pathways linked to these factors are involved in the up-regulation of Fas ligand (FasL), FasL mRNA was quantified and found to be increased. Immunohistochemical studies also revealed METH-induced increased FasL protein expression in striatal GABAergic neurons that express enkephalin. Moreover, there were METH-mediated increases in calcineurin, as well as shuttling of nuclear factor of activated T cells (NFAT)c3 and NFATc4 from the cytosol to the nucleus of METH-treated rats, mechanisms also known to be involved in FasL regulation. Furthermore, METH induced cleavage of caspase-3 in FasL- and Fas-containing neurons. Finally, the METH-induced changes in the FasL-Fas death pathway were attenuated by pretreatment with the dopamine D1 receptor antagonist, SCH23390, which also caused attenuation of METH-induced apoptosis. These observations indicate that METH causes some of its neurodegenerative effects, in part, via stimulation of the Fas-mediated cell death pathway consequent to FasL up-regulation mediated by activation of multiple TFs

    T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes.

    No full text
    Inflammation is a protective attempt by the host to remove injurious stimuli and initiate the tissue healing process. The inflammatory response must be actively terminated, however, because failure to do so can result in 'bystander' damage to tissues and diseases such as arthritis or type-2 diabetes. Yet the mechanisms controlling excessive inflammatory responses are still poorly understood. Here we show that mouse effector and memory CD4(+) T cells abolish macrophage inflammasome-mediated caspase-1 activation and subsequent interleukin 1beta release in a cognate manner. Inflammasome inhibition is observed for all tested NLRP1 (commonly called NALP1) and NLRP3 (NALP3 or cryopyrin) activators, whereas NLRC4 (IPAF) inflammasome function and release of other inflammatory mediators such as CXCL2, interleukin 6 and tumour necrosis factor are not affected. Suppression of the NLRP3 inflammasome requires cell-to-cell contact and can be mimicked by macrophage stimulation with selected ligands of the tumour necrosis factor family, such as CD40L (also known as CD40LG). In a NLRP3-dependent peritonitis model, effector CD4(+) T cells are responsible for decreasing neutrophil recruitment in an antigen-dependent manner. Our findings reveal an unexpected mechanism of inflammasome inhibition, whereby effector and memory T cells suppress potentially damaging inflammation, yet leave the primary inflammatory response, crucial for the onset of immunity, intact
    corecore