9 research outputs found

    The effects of post-deposition annealing conditions on structure and created defects in Zn0.90Co0.10O thin films deposited on Si(100) substrate

    Get PDF
    We analyze the effect of post-deposition annealing conditions on both the structure and the created defects in Zn0.90Co0.10O thin films deposited on the Si (100) substrates by RF magnetron sputtering technique using home-made targets. We concentrated on understanding the homogeneity of substituted Co+2 ions and the annealing effects on the amount of defects in the ZnO lattice. Orientations of thin films are found to be in the [0002] direction with a surface roughness changing from 67±2 nm to 25.8±0.6 nm by annealing. The Co+2 ion substitutions, changing from 7.5±0.3 % to 8.8±0.3 %, cause to form Zn–O–Co bonds instead of Zn–O–Zn and split the Co2p energy level to Co2p1/2 and Co2p3/2 with 15.67±0.06 eV energy difference. In addition, the defects in the lattice were revealed from the correlations between Zn–O–Co bonds and intensity of Raman peak at around 691 cm-1. Furthermore, the asymmetry changes of O1s peak positions in X-ray Photoelectron Spectra (XPS) were also found to be in accordance with the Raman results

    A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (gamma-Fe2O3) and hematite (alpha-Fe2O3), using ferromagnetic resonance

    No full text
    We investigated intra/inter particle interactions in single domain size magnetite (Fe3O4), maghemite (gamma-Fe2O3) and hematite (alpha-Fe2O3) iron oxide particles. The magnetic analyses were done using vibrating sample magnetometer and magnetic resonance measurements that were taken from 5 to 300 K and from 120 to 300 K, respectively. The magnetic resonance analyses were done for the iron oxides, frozen under 5000 G fields in glycerol matrix. By changing the temperature, a change in resonance field lines was observed at each Fe3O4, gamma-Fe2O3 and alpha-Fe2O3 nanoparticles. However, the fits in resonant lines showed that Lande g values (spectroscopic splitting factor) stayed stable with temperature decrease. The thermal sensitivities that were determined from Lande g factors, revealed three dominant interactions on resonant lines namely; the exchange coupling in between Fe2+, Fe3+ and O (g(1) = 3.01 +/- 0.08), Fe3+ centers (1.88 +/- 0.03 <= g(2) <= 2.02 +/- 0.03, depending on iron oxide states) and flip flop of O ions in between ionic states of Fe2+-O (1) and Fe3+-O (2) (2.35 +/- 0.06 <= g(3) <= 2.44 +/- 0.06, depending on iron oxide states)

    Electrical and optical properties of point defects in ZnO thin films

    No full text
    We show that the deposition of ZnO films under varying oxygen partial pressure and annealing conditions allows for the controllable formation of specific defects. Using x-ray diffraction and photoluminescence, we characterize the defects formed and show that these defects are responsible for changes in film carrier density, carrier type, sheet resistivity and mobility

    Synthesis and characterization of ZnGa2O4 particles prepared by solid state reaction

    No full text
    We employed solid state reaction technique to synthesize ZnGa2O4 particles, produced in steps of mixing/milling the ingredients in H2O following thermal treating under 1200 degrees C. We compare spinel and partially inverse spinel structure in ZnGa2O4 particles using Rietveld refinement. Crystal structure of ZnGa2O4 particles was identified with two structural phases; normal spinel structure and partially inverse spinel structure using Rietveld refinement. It is found that the partially inverse spinel structures occupy nearly 13% and the rest is normal spinel structure. The obtained X-ray diffraction data show that lattice constant and the position of Oxygen atoms remain almost constant in both structures. The characterization of the particles was also improved using X-ray photoelectron spectroscopy and Fourier transforms infrared spectroscopy measurements. The optical analyses were done with UV-visible spectroscopy. The band gap, calculated from climate point of UV-visible data, was found as 4.6 +/- 0.1 eV. Despite no unexpected compound (such as ZnO and Ga2O3) in the structure, the optical analyses were shown defective ZnO structure in ZnGa2O4

    Surface anisotropy change of CoFe2O4 nanoparticles depending on thickness of coated SiO2 shell

    No full text
    We systematically investigated the effective surface anisotropy of CoFe2O4 nanoparticles dependant on the thickness of SiO2 shell. XRD (X-ray powder diffraction) patterns and TEM (transmission electron microscopy) micrographs were used to investigate the structure of particles and thickness of SiO2 shell, respectively. The thicknesses of SiO2 shell with 5.41 nm on CoFe2O4 nanoparticles were increased up to 14.04 +/- 0.05 nm by changing the amount of added TEOS by, 0.10, 0.25, 0.50, 1.00, 1.50, and 2.50 mL. The increase of the SiO2 thickness shell decreased the effective anisotropy due to decline the effectiveness of the dipolar magnetostatic interactions, determined from Vogel-Fulcher equation, between the particles. The declines in the Keff values stabled at around 3.76 +/- 0.11 x 10(5) J/m(3) for TEOS amount higher than 1.5 mL
    corecore