39 research outputs found
Tracking the weathering of basalts on Mars using lithium isotope fractionation models
An edited version of this paper was published by AGU. Copyright (2015) American Geophysical UnionLithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium - 7Li and 6Li - have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals - the source of Li - and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's historyData supporting our models and calculations are available as supporting information. The research leading to these results is a contribution from the Project ‘icyMARS’’, funded by the European Research Council, Starting Grant no 307496. This work was also partially supported by the European FEDER program and the Spanish Ministry of Science (MICINN) through the project CGL2011–30079. Comments by R. James and four anonymous reviewers helped us to clarify and strengthen our wor
Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel (Anguilla rostrata): Recommendations for Methods Standardization
Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.publishedVersio