95 research outputs found

    Macroscopic quantum information processing using spin coherent states

    Full text link
    Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {\it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the scheme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.Comment: published in Optics Communication August 201

    Corticosterone Induces Rapid Spinogenesis via Synaptic Glucocorticoid Receptors and Kinase Networks in Hippocampus

    Get PDF
    BACKGROUND: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated the mechanisms of rapid effect (∼1 h) of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100-1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2-0.4 µm) was increased even at low CORT levels (100-200 nM). The density of middle-head spines (0.4-0.5 µm) was increased at high CORT levels between 400-1000 nM. The density of large-head spines (0.5-1.0 µm) was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR), abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. CONCLUSIONS/SIGNIFICANCE: These results imply that stress levels of CORT (100-1000 nM) drive the spinogenesis via synaptic GR and multiple kinase pathways

    Endogenous Synthesis of Corticosteroids in the Hippocampus

    Get PDF
    BACKGROUND: Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21). METHODOLOGY/PRINCIPAL FINDINGS: The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG) was demonstrated by metabolism analysis of (3)H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21), P450(2D4), P450(11β1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT) and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM) doses of CORT for 1 h. CONCLUSIONS/SIGNIFICANCE: These results imply the complete pathway of corticosteroid synthesis of 'pregnenolone →PROG→DOC→CORT' in the hippocampal neurons. Both P450(c21) and P450(2D4) can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands

    Dynamics of evaporative cooling in magnetically trapped atomic hydrogen

    Full text link
    We study the evaporative cooling of magnetically trapped atomic hydrogen on the basis of the kinetic theory of a Bose gas. The dynamics of trapped atoms is described by the coupled differential equations, considering both the evaporation and dipolar spin relaxation processes. The numerical time-evolution calculations quantitatively agree with the recent experiment of Bose-Einstein condensation with atomic hydrogen. It is demonstrated that the balance between evaporative cooling and heating due to dipolar relaxation limits the number of condensates to 9x10^8 and the corresponding condensate fraction to a small value of 4% as observed experimentally.Comment: 5 pages, REVTeX, 3 eps figures, Phys. Rev. A in pres

    Stabilization of the number of Bose-Einstein condensed atoms in evaporative cooling via three-body recombination loss

    Get PDF
    The dynamics of evaporative cooling of magnetically trapped 87^{87}Rb atoms is studied on the basis of the quantum kinetic theory of a Bose gas. We carried out the quantitative calculations of the time evolution of conventional evaporative cooling where the frequency of the radio-frequency magnetic field is swept exponentially. This "exponential-sweep cooling" is known to become inefficient at the final stage of the cooling process due to a serious three-body recombination loss. We precisely examine how the growth of a Bose-Einstein condensate depends on the experimental parameters of evaporative cooling, such as the initial number of trapped atoms, the initial temperature, and the bias field of a magnetic trap. It is shown that three-body recombination drastically depletes the trapped 87^{87}Rb atoms as the system approaches the quantum degenerate region and the number of condensed atoms finally becomes insensitive to these experimental parameters. This result indicates that the final number of condensed atoms is well stabilized by a large nonlinear three-body loss against the fluctuations of experimental conditions in evaporative cooling.Comment: 7 pages, REVTeX4, 8 eps figures, Phys. Rev A in pres

    Optimization of evaporative cooling towards a large number of Bose-Einstein condensed atoms

    Full text link
    We study the optimization of evaporative cooling in trapped bosonic atoms on the basis of quantum kinetic theory of a Bose gas. The optimized cooling trajectory for 87^{87}Rb atoms indicates that the acceleration of evaporative cooling around the transition point of Bose-Einstein condensation is very effective against loss of trapped atoms caused by three-body recombination. The number of condensed atoms is largely enhanced by the optimization, more than two orders of magnitude in our present calculation using relevant experimental parameters, as compared with the typical value given by the conventional evaporative cooling where the frequency of radio-frequency magnetic field is swept exponentially. In addition to this optimized cooling, it is also shown that highly efficient evaporative cooling can be achieved by an initial exponential and then a rapid linear sweep of frequency.Comment: 7 pages, REVTeX, 5 eps figures, Phys. Rev A in press (01 Feburuary 2003

    A Single Nucleotide Polymorphism within the Novel Sex-Linked Testis-Specific Retrotransposed PGAM4 Gene Influences Human Male Fertility

    Get PDF
    The development of novel fertilization treatments, including in vitro fertilization and intracytoplasmic injection, has made pregnancy possible regardless of the level of activity of the spermatozoa; however, the etiology of male-factor infertility is poorly understood. Multiple studies, primarily through the use of transgenic animals, have contributed to a list of candidate genes that may affect male infertility in humans. We examined single nucleotide polymorphisms (SNPs) as a cause of male infertility in an analysis of spermatogenesis-specific genes.We carried out the prevalence of SNPs in the coding region of phosphoglycerate mutase 4 (PGAM4) on the X chromosome by the direct sequencing of PCR-amplified DNA from male patients. Using RT-PCR and western blot analyses, we identified that PGAM4 is a functional retrogene that is expressed predominantly in the testes and is associated with male infertility. PGAM4 is expressed in post-meiotic stages, including spermatids and spermatozoa in the testes, and the principal piece of the flagellum and acrosome in ejaculated spermatozoa. A case-control study revealed that 4.5% of infertile patients carry the G75C polymorphism, which causes an amino acid substitution in the encoded protein. Furthermore, an assay for enzymatic activity demonstrated that this polymorphism decreases the enzyme's activity both in vitro and in vivo.These results suggest that PGAM4, an X-linked retrogene, is a fundamental gene in human male reproduction and may escape meiotic sex chromosome inactivation. These findings provide fresh insight into elucidating the mechanisms of male infertility
    • …
    corecore