362 research outputs found

    Behavioural differences between breeding and nonbreeding pairs of protandry monogamous false clown anemonefish Amphiprion ocellaris

    Get PDF
    Anemonefishes are some of the most popular marine ornamental fishes. Due to the adverse impacts of commercial fishing on the wild populations of anemonefishes, a more suitable and efficient captive breeding programme must be promoted. In the wild, anemonefishes are protandrous sex-changing fish, but when two immature individuals with ambisexual gonads are raised together in captivity, the two differentiate directly into a male and a female, to form a breeding pair. However, not all the formed pairs spawn, explaining the great care required in captive breeding. This behaviour appears to be counter-adaptative, as anemonefish social groups form randomly in the wild, and such phenomenon would disturb their breeding success. This study evaluated the behavioural and physiological differences between breeding and nonbreeding pairs of false clown anemonefish Amphiprion ocellaris under captive conditions. Behavioural observations revealed that nonbreeding females monopolized the shelter provided, whereas breeding females allowed breeding males to use the shelter and the pair frequently stayed together in the shelter. Both nonbreeding and breeding females possessed mature ovarian tissue and similar level of plasma estradiol concentrations, but nonbreeding males had a smaller amount of testicular tissue and lower plasma 11-ketotestosterone levels compared to breeding males

    Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Get PDF
    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle

    Quantum Double-Torus

    Full text link
    A symmetry extending the T2T^2-symmetry of the noncommutative torus Tq2T^2_q is studied in the category of quantum groups. This extended symmetry is given by the quantum double-torus defined as a compact matrix quantum group consisting of the disjoint union of T2T^2 and Tq22T^2_{q^2}. The bicross-product structure of the polynomial Hopf algebra of the quantum double-torus is computed. The Haar measure and the complete list of unitary irreducible representations of the quantum double-torus are determined explicitly.Comment: 6 pages, no figures, amslatex, reformatted for Comptes Rendus, references added, typos and French correcte

    Theoretical calculation of uncertainty region based on the general size distribution in the preparation of standard reference particles for particle size measurement

    Get PDF
    In order to confirm the reliability of particle size measurement technique and to prepare standard reference particles for calibrating particle size measurement devices, experimental and theoretical studies have been conducted about the uncertainty region of particle size measurement for the general particle size distribution. A new theoretical equation to calculate fundamental uncertainty region in the case that the maximum and minimum particle sizes are known, is derived based on Tschebyscheff theory. The uncertainty regions calculated based on the proposed method are applied to poly-disperse particles and a picket-fence distribution composed of two kinds of nearly mono-disperse particles. For the poly-disperse particles, the uncertainty region increases with the increase in particle diameter. For the picket-fence distribution composed of two kinds of nearly mono-disperse particles, the uncertainty region increases around the intermediate particle diameters between the two kinds of particles. Numerical simulation of uncertainty region for the picket-fence distribution has also been carried out. The uncertainty region decreases with the increase in sample size or the decrease in geometric standard deviation

    Cellular biology of cryopreserved allograft valves

    Get PDF
    Although analyzing the precise mechanisms of cryopreserved allograft valve failure may be difficult due to a number of crucial reasons and the interrelationships between the overlapping mechanisms, there is some evidence that cryopreservation is currently the best method of storing allograft valves. The present review shows the basic cellular biology of cryopreserved allograft valves for long-term durability, particularly relevant to allograft valve cellular viability, the immune response mainly caused by viable donor cells, and the preservation and regeneration of the intrinsic extracellular matrix. The present findings are as follows. First, cryopreservation produces serious damage to cytosolic and mitochondrial functions of both endothelial cells and fibroblasts, which may cause valve failure after implantation. Second, although the collagen synthesis of cryopreserved valves was relatively maintained, total protein synthesis was highly diminished and the collagenolytic ability was activated immediately after the thawing process. These findings imply that the cryopreservation itself may cause the collagen metabolism to become degradable, which will lead to valve failure. Further examination of collagen metabolism and modulation of the collagenolytic activity will be necessary to improve the tissue preservation for improved clinical use

    Biological interaction of alginetin

    Get PDF
    Alginetin is the major product formed from pentoses and hexurionic acids. Alginetin is producted by cooking process of food including pection, a naturally-occurring polysacharride found in many plants. However, the biological interaction and toxicity of alginetin are not known at all. The aim of the present study was to investigate the cellular actions of alginetin on rat thymic lymphocytes. The effects of alginetin on the cell were examined using flow cytometry with fluorescent probes. Alginetin increased cellular content of non-protein thiols ([NPT]i) and elevated intracellular Zn2+ levels ([Zn2+]i). Chelation of intracellular Zn2+ reduced the effect of alginetin on [NPT]i, and chelation of external Zn2+ almost completely diminished alginetin-induced elevation of [Zn2+]i, indicating that alginetin treatment increased Zn2+ influx. Increased [NPT]i and [Zn2+]i levels in response to alginetin were positively correlated. Alginetin protected cells against oxidative stress induced by hydrogen peroxide and Ca2+ overload by calcium ionophore. It is considered that the increases in [NPT]i and [Zn2+]i are responsible for the cytoprotective activity of alginetin because NPT attenuates oxidative stress and Zn2+ competes with Ca2+. Alginetin may be produced during manufacturing of jam, which may provide additional health benefits of jam

    Dependence of alkyl-substituent length for bulk heterojunction solar cells utilizing 1,4,8,11,15,18,22,25-octaalkylphthalocyanine

    Full text link
    Tetsuro Hori, Yasuo Miyake, Tetsuya Masuda, Takeshi Hayashi, Kaoru Fukumura, Hiroyuki Yoshida, Akihiko Fujii, Masanori Ozaki, and Yo Shimizu "Dependence of alkyl-substituent length for bulk heterojunction solar cells utilizing 1,4,8,11,15,18,22,25-octaalkylphthalocyanine," Journal of Photonics for Energy 2(1), 021004 (2 March 2012). DOI: https://doi.org/10.1117/1.JPE.2.02100
    corecore