45 research outputs found

    Role of BMP signaling in leg regeneration

    Get PDF
    The cricket, Gryllus bimaculatus, is a classic model of leg regeneration following amputation. We previously demonstrated that Gryllus decapentaplegic (Gb’dpp) is expressed during leg regeneration, although it remains unclear whether it is essential for this process. In this study, double-stranded RNA targeting the Smad mathers-against-dpp homolog, Gb’mad, was employed to examine the role of Bone morphogenetic protein (BMP) signaling in the leg regeneration process of Gryllus bimaculatus. RNA interference (RNAi)-mediated knockdown of Gb’mad led to a loss of tarsus regeneration at the most distal region of regenerating leg segments. Moreover, we confirmed that the phenotype obtained by knockdown of Dpp type I receptor, Thick veins (Gb’tkv), closely resembled that observed for Gb’mad RNAi crickets, thereby suggesting that the BMP signaling pathway is indispensable for the initial stages of tarsus formation. Interestingly, knockdown of Gb’mad and Gb’tkv resulted in significant elongation of regenerating tibia along the proximodistal axis compared with normal legs. Moreover, our findings indicate that during the regeneration of tibia, the BMP signaling pathway interacts with Dachsous/Fat (Gb’Ds/Gb’Ft) signaling and dachshund (Gb’dac) to re-establish positional information and regulate determination of leg size. Based on these observations, we discuss possible roles for Gb’mad in the distal patterning and intercalation processes during leg regeneration in Gryllus bimaculatus

    Involvement of dachshund and Distal-less in distal pattern formation of the cricket leg during regeneration

    Get PDF
    Cricket nymphs have the remarkable ability to regenerate a functional leg following amputation, indicating that the regenerating blastemal cells contain information for leg morphology. However, the molecular mechanisms that underlie regeneration of leg patterns remain poorly understood. Here, we analyzed phenotypes of the tibia and tarsus (three tarsomeres) obtained by knockdown with regeneration-dependent RNA interference (rdRNAi) against Gryllus dachshund (Gb'dac) and Distal-less (Gb'Dll). We found that depletion of Gb'Dll mRNA results in loss of the tarsal segments, while rdRNAi against Gb'dac shortens the tibia at the two most distal tarsomeres. These results indicate that Gb'Dll expression is indispensable for formation of the tarsus, while Gb'dac expression is necessary for elongation of the tibia and formation of the most proximal tarsomere. These findings demonstrate that mutual transcriptional regulation between the two is indispensable for formation of the tarsomeres, whereas Gb'dac is involved in determination of tibial size through interaction with Gb'ds/Gb'ft

    Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes

    Get PDF
    In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes

    Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus

    Get PDF
    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression

    Regulation of JH biosynthesis by TGF-β signaling

    Get PDF
    While butterflies undergo a dramatic morphological transformation from larvae to adult via a pupal stage (e.g., holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (e.g., hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapauses, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata (CA) of the cricket, Gryllus bimaculatus (Gb), Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing expression of a gene encoding JH acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by Decapentaplegic (Gb’Dpp) and Glass bottom boat/60A (Gb’Gbb) signaling that occurs as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each developmental transition by regulating JH titre and the interactions between JH and 20E. When Gb’myo expression is suppressed, activation of Gb’jhamt expression and secretion of 20E induces molting, thereby leading to the next instar prior to the last nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the last nymphal instar due to cessation of JH synthesis. Gb’myo also regulates final insect size. Since Myoglianin/GDF8/11 and Dpp/BMP2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms regarding endocrine control of animal development

    A questionnaire-based comparative study of postoperative quality of life between laryngotracheal separation and tracheoesophageal diversion

    Get PDF
    Purpose: Whether tracheoesophageal diversion (TED) is preferable to laryngotracheal separation (LTS) is unclear. This study examined the need for tracheoesophageal anastomosis by reviewing complications after TED and LTS and administering a questionnaire on postoperative quality of life.Patients and methods: Medical records of TED/LTS cases performed at a single institution from 2003 to 2015 were retrospectively reviewed and a questionnaire was administered to parents of patients at an outpatient visit.Results: A total of 40 TED and 18 LTS cases were included. Complications occurred in six TED cases and one LTS case, with no significant differences between groups (P=0.42). A total of 22 parents of patients (TED 16 cases; LTS six cases) completed the questionnaire. Voice production was reported in three TED cases and two LTS cases. Patients indicated that suctions were ‘decreased’ in 13 and ‘unchanged’ in two TED cases, but ‘decreased’ in one and ‘unchanged’ in five LTS cases (P=0.0055). Readmissions were ‘increased’ in one and ‘decreased’ in 14 TED cases, but ‘decreased’ in three and ‘unchanged’ in three LTS cases (P=0.015).Conclusion: Postoperative complication rate was equivalent between groups, and the numbers of suctions and readmissions were decreased in the TED group. Therefore, tracheoesophageal anastomosis should be performed more commonly.Keywords: complication, laryngotracheal separation, quality of life questionnaire, tracheoesophageal diversio

    Immobilization of Photoelectric Dye on the Polyethylene FilmSurface

    Get PDF
    PE film was treated with fuming nitric acid at 80℃ for 20 min, resulting in introduction of COOH moieties on the film surface. The COOH’s were reacted with ethylenediamine, whose amino groups were used for linking with (2-[4-(dibutylamino)phenyl]ethenyl)-3-carboxy-methylbenzo-thiazolium, photoelectric dye (NK-5962), which absorbs visible light and converts the photon energy to electric potentials. The dye molecules were immobilized on the PE film surface and they were able to stimulate chick retinal tissues on incidence of visible light. These facts hopefully lead to development of an artificial retinal prosthesis

    Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus

    Get PDF
    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression
    corecore