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Abstract  

While butterflies undergo a dramatic morphological transformation from larvae to adult 

via a pupal stage (e.g., holometamorphosis), crickets undergo a metamorphosis from 

nymph to adult without formation of a pupa (e.g., hemimetamorphosis). Despite these 

differences, both processes are regulated by common mechanisms that involve 

20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of 

insect physiology, such as development, reproduction, diapauses, and metamorphosis. 

Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. 

However, it remains unclear how JH synthesis is regulated. Here, we report that in the 

corpora allata (CA) of the cricket, Gryllus bimaculatus (Gb), Myoglianin (Gb’Myo), a 

homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the 

down-regulation of JH production by suppressing expression of a gene encoding JH 

acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by 

Decapentaplegic (Gb’Dpp) and Glass bottom boat/60A (Gb’Gbb) signaling that occurs 

as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each 

developmental transition by regulating JH titre and the interactions between JH and 20E. 

When Gb’myo expression is suppressed, activation of Gb’jhamt expression and 

secretion of 20E induces molting, thereby leading to the next instar prior to the last 

nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the 

last nymphal instar due to cessation of JH synthesis. Gb’myo also regulates final insect 

size. Since Myoglianin/GDF8/11 and Dpp/BMP2/4-Gbb/BMP5-8 are conserved in both 
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invertebrates and vertebrates, the present findings provide common regulatory 

mechanisms regarding endocrine control of animal development. 
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Significance Statement 

Insects undergo a morphological transformation from nymph/larvae to adult with or 

without pupal formation, and these processes are referred to as hemi- and 

holo-metamorphosis, respectively. Both processes are regulated by common 

mechanisms involving the hormones, 20-hydroxyecdysone (20E) and juvenile hormone 

(JH). However, it remains unclear how synthesis of JH is regulated in the corpora allata 

(CA). Here, we report that the TGF-β ligands, Gb’Myo (GDF8/11) and Gb’Dpp/Gbb, 

regulate JH synthesis via JH acid O-methyltransferase (Gb’jhamt) expression in the CA. 

Furthermore, loss of Gb’Myo function preserves the ‘status quo’ action of JH and 

prevents metamorphosis. These findings elucidate the regulatory mechanisms that 

provide endocrine control of insect life cycles, and also provide a new model of 

GDF8/11 function. 
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Introduction 

Holometabolous insects, such as butterflies, beetles, and flies, undergo a dramatic 

morphological transformation from larva to pupa to adult, and this process is referred to 

as holometamorphosis. Hemimetabolous insects, such as locusts, cockroaches, and 

crickets, also undergo morphogenesis to form mature wings and external genitalia, 

similar to that observed in the larva-to-pupa transition and pupa of holometabolous 

insects. However, the change of form is not drastic, given that nymphs are similar to 

their adult form. Despite these differences in metamorphic type, both hemimetabolous 

and holometabolous processes are regulated by common mechanisms involving the 

molting steroid, 20-hydroxyecdysone (20E), and the sesquiterpenoid, juvenile hormone 

(JH) (1-3). The latter regulates many aspects of insect physiology, such as development, 

reproduction, diapauses, and metamorphosis (4, 5). Consequently, strict regulation of 

JH levels is crucial throughout an insect’s life cycle. JH is synthesized in and released 

from the corpora allata (CA), a pair of epithelial endocrine glands in the head (6-8). It 

has been hypothesized that JH biosynthesis is regulated by both stimulatory 

(allatotropic) and inhibitory (allatostatic) neuropeptides, and JH is able to reach the 

glands via the hemolymph and/or nervous connections (9). However, the mechanism(s) 

regulating JH synthesis remain unclear. 

Temporal transcriptional control of jhamt, a gene that encodes a JH acid 

O-methyltransferase that converts inactive JH precursors into active JH, is thought to be 

critical for regulating JH synthesis (3, 10). Furthermore, the protein, JHAMT, has been 
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found to catalyze the final step of the JH biosynthesis pathway in the CA of various 

insects, including Drosophila melanogaster, Tribolium castaneum, Apis mellifera, and 

Bombyx mori (11-14). It has also been demonstrated that jhamt is predominantly 

expressed in the CA, and its developmental expression profile highly correlates with 

changes in JH titre. However, the molecular mechanisms underlying regulation of the 

temporal expression profile of jhamt remain unknown, and this represents a 

long-standing area of research in entomology (10). In order to elucidate the mechanisms 

underlying the regulation of JH titre, the cricket, Gryllus bimaculatus (15, 16), was 

employed as a model system of hemimetabolous ancestors that evolved into 

holometabolous insects (2, 17). In the present study, we demonstrate that Gryllus 

bimaculatus Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin 

(18)/vertebrate GDF8/11 (19), suppresses expression of Gb’jhamt in the CA of the 

cricket Gryllus bimaculatus to down-regulate JH production. Conversely, up-regulation 

of JH is achieved by Gb’Dpp and Gb’Gbb, members of the TGF-β family, as part of a 

signaling pathway that mediates transcriptional activation of Gb’jhamt. Overall, these 

findings provide a paradigm with which to better understand endocrine control of 

invertebrate developmental processes. 
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Results 

In Drosophila melanogaster (Dm), it was reported that loss of Dm’mad, Dm’tkv, or 

Dm’dpp caused precocious metamorphosis, even in the early larval stages (20). 

Therefore, we first examined whether Dpp signaling plays a role in regulating Gryllus 

metamorphosis. For these studies, interfering RNA (RNAi) targeting Gb’mad, Gb’tkv, 

and Common mediator (Co)-Smad (Gb’medea) were individually injected into 3rd instar 

nymphs. The nymphs that received RNAi targeting Gb’mad or Gb’tkv achieved adult 

metamorphosis at the 7th instar rather than the 8th instar in both sexes (Fig. 1A; male n = 

12/15, female n = 14/16 for Gb’mad and Fig. 1B; male n = 10/12, female n = 12/15 for 

Gb’tkv). In addition, an overall reduction in body size and weight were observed for 

both RNAi-treated nymphs (Fig. 1 C and D). Following the injection of RNAi targeting 

Gb’mad, dysgenesis of the wing pads (Fig. 1 E and G) and ovipositor (Fig. 1 F and H) 

were observed during the 6th instar and the precocious adult stage. Finally, 

RNAi-mediated depletion of Gb’medea led to precocious adult metamorphosis that 

occurred at the 7th instar (n = 10/21). As a result, malformation of the wing pads (Fig. 

S1 D and E) and ovipositor (Fig. S1F) were observed compared with the DsRed2 RNAi 

control nymphs (Fig. S1 A-C; n = 31).  

On the other hand, we identified three different Gryllus BMP homologs. 

Therefore, each of these homologs were targeted with RNAi, including: Gb’dpp 

(BMP2/4 homolog; n = 33), Gb’dpp like1 (BMP2-like homolog; n = 29), and Gb’dpp 

like2 (BMP3 homolog; n = 31). Combinations of these homologs were also targeted: 

Gb’dpp + Gb’dpp like1 (n = 25), Gb’dpp + Gb’dpp like2 (n = 28), Gb’dpp like1 + 
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Gb’dpp like2 (n = 27), and Gb’dpp + Gb’dpp like1 + Gb’dpp like2 (n = 28). However, 

all of the nymphs that received these RNAi treatments developed normally to become 

adults (Fig. S1M). It is possible that the absence of an effect in these experiments may 

be due to the presence of other redundant ligand(s).  

To identify ligand(s) that may be redundant for Gb’dpp, RNAi was next used to 

target various Gryllus homologs of the Drosophila TGF-β family members (21), 

including: glass bottom boat/60A (Gb’gbb), activinβ (Gb’actβ), maverick (Gb’mav), 

and myoglianin (Gb’myo).  

Initially, it was investigated whether depletion of Gb’gbb mRNA could be linked 

to the effects associated with loss of Gb’tkv, Gb’mad, or Gb’medea. Following the 

injection of RNAi targeting Gb’gbb into 3rd instar nymphs, precocious differentiation of 

adult features was observed, and these features were similar to those exhibited by the 

nymphs that underwent depletion of Gb’mad or Gb’medea by RNAi. However, the 

number of Gb’gbb-depleted nymphs that were obtained was substantially lower (Fig. S1 

G-I; n = 6/33). Since Gbb forms a heterodimeric complex with Dpp in Drosophila 

(22-24), we hypothesized that the simultaneous depletion of Gb’dpp and Gb’gbb would 

be sufficient to impair normal adult development, especially in the wing pads and 

ovipositor. Therefore, we next injected RNAi targeting Gb’dpp and RNAi targeting 

Gb’gbb into 3rd instar nymphs. A total of 14/16 nymphs exhibited precocious adult 

metamorphosis. Furthermore, the wing pads and ovipositors of the resulting 6th instar 

nymphs and precocious adults resembled those of the nymphs that received RNAi 

targeting Gb’mad or Gb’medea (Fig. S1 J-L). In contrast, the combination of targeting 
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Gb’dpp like1/2 and Gb’gbb with RNAi did not affected the ratio of appearance of 

precocious adult metamorphosis (Gb’dpp like1 +Gb’gbb; n = 2/15 and Gb’dpp like2 + 

Gb’gbb; n = 4/17). Overall, these results demonstrate that the Dpp signaling pathway is 

triggered by heterodimeric ligand complexes of Dpp and Gbb, and Dpp/Gbb signaling 

via Tkv and Mad/Medea is critical for ensuring the completion of adult metamorphosis.  

When RNAi targeting myoglianin was injected into 3rd instar nymphs, a 

supernumerary nymphal molt was observed in 52/59 of the injected nymphs. In 

comparison, the nymphs that were injected with RNAi targeting DsRed2 (the control 

nymphs; n = 33) underwent normal molting between the 4th and 8th instars and then 

became adults (Figs. 2A and S4N). The molting of the myoglianin-targeted nymphs 

specifically involved a progression series of 3rd-3’-3’’-4th-4’-4’’-5th or 3rd–

3’-4th-4’-4’’-4’’’-5th (instead of 3rd-4th-5th), and then they subsequently underwent a 6th 

instar molt (Fig. 2 A and B). We subsequently identified the myoglianin homolog as, 

metamorphosis inducing factor (Gb’myo), and its predicted amino acid sequence 

contains hallmarks of the TGF-β family members (Fig. S2 A-C). Moreover, although the 

nymphs injected with RNAi targeting Gb’myo blocked the morphological transition 

from one nymphal instar to the next, the number of supernumerary molts at each instar 

was restricted to 1–3 molts. Moreover, when the 6th instar nymphs became adults after 

these supernumerary molts, their body size and weight were significantly greater than 

those of the controls (Fig. 2 B, T, and U), and the developmental period for 

metamorphosis was approximately twice that of the controls (Fig. S4N). However, 

progressive morphogenesis of the wing pads (Fig. 2 G-K) and the ovipositor primordial 
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(Fig. 2 P-S) remained unchanged in the supernumerary nymphs over an extended period 

of time, whereas the control nymphs developed normal wing pads (Fig. 2 C-F) and 

ovipositors (Fig. 2 L-O). Furthermore, when RNAi targeting the TGF-β signaling factor 

smox/Smad2 (Gb’smox) (Fig. S3 A, D, and E; n = 17/22) and RNAi targeting the type I 

receptor baboon (Gb’babo) (Fig. S3B; n = 10/15) were injected into 3rd instar nymphs, 

similar phenotypes as those associated with the control nymphs were observed. Based 

on these RNAi results, targeting of Gb’myo, Gb’babo, and Gb’smox appears to preserve 

the ‘status quo’; and then after molting, wings and ovipositors are able to form normally 

– potentially due to loss of the RNAi effects.  

To further investigate the ‘status quo’ preservation that characterized the RNAi 

targeting of Gb’myo, the same RNAi was injected into 4th instar (Fig. S4 A and B, Fig. 

S4C; n = 15/15 for a second dose of RNAi targeting Gb’myo at the 5th instar), into 5th 

instar (Fig. S4 D, G, and H; n = 14/15), and into 6th instar (Fig. S4 K and L; n = 10/10) 

nymphs within the first 24 h after ecdysis. Changes in the wing pads and ovipositor for 

these stages (Fig. S4 E-L), in the relative amounts of Gb’myo transcripts (Fig. S4M), 

and the temporal profile of these changes (Fig. S4N) suggest that Gb’myo may 

determine the molting characteristics that occur between different nymphal instars. 

Furthermore, loss of the functions mediated by the Gb’Myo protein resulted in 

developmental arrest and death at the 6th instar.  

Methoprene is an analog of JH and it was also applied to nymphs during the 3rd 

instar. Following this treatment, supernumerary molting occurred and larger adults 

resulted (Fig. S3 C-E; n = 17/23). A similar phenotype was observed for the nymphs 
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that received Gb’myo-targeted RNAi. Therefore, we hypothesized that the latter might 

be due to a constant JH titre. 

To examine a potential dependence of nymphal instars on the concentration of JH 

in the hemolymph, JH III production was monitored. Periodic changes in JH III 

production were observed (Fig. 3A), and at the final (8th) instar, the titre of JH III 

declined to a low level on day 1 and then was not synthesized until day 7 to allow for 

adult molting (Fig. 3A). To further examine whether periodic changes in the JH III titre 

depended on Gb’Myo function, JH III titres were quantified on day 5 for the 

supernumerary instars (3’ and 4th) that had received RNAi targeting Gb’myo. Loss of 

Gb’myo mRNA resulted in constitutively higher JH III titre levels, whereas introduction 

of RNAi targeting Gb’mad only lowered the JH III titre levels on day 1 of the 4th and 6th 

instars (Fig. 3B). In combination, these data suggest that Gb’Mad and Gb’Myo play 

crucial roles in controlling JH biosynthesis.  

To investigate the spatial and temporal expression patterns of Gb’myo mRNA, 

quantitative RT-PCR (qPCR) was performed. Gb’myo mRNA was found to be highly 

expressed in the head and thorax 1 (Fig. S5A), while the levels of Gb’myo mRNA 

exhibited periodic changes in each of the instars, with a peak in Gb’myo mRNA 

detected on day 3 (Fig. 3C). While a stepwise increase in the levels of Gb’myo mRNA 

was observed throughout the developmental stages, they were not observed in 

adulthood. Moreover, the levels of Gb’myo mRNA exhibited no obvious differences 

between males and females during all nymphal and adult stages. When the levels of 

Gb’jhamt mRNA were detected, peaks in expression were initially observed on day 1 in 
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each instar, they decreased by day 3, and then they completely disappeared on the day 

before molting (Fig. 3E). This pattern may be associated with the ecdysis process which 

is closely tied to the JH cycle. In contrast, Gb’dpp mRNA was found to be 

constitutively expressed in the head throughout the nymphal stages (Fig. 3D). For 

Gb’CYP15A1, a cytochrome P450 gene which is essential for JH biosynthesis (25), a 

slight change in its transcript levels was observed, and the highest transcript levels were 

detected in the 8th instar females (Fig. 3F). These results suggest that although Gb’dpp 

may play a role in regulating Gb’jhamt expression, Gb’myo appears to act as a 

rate-limiting factor in the Gb’jhamt expression pathway.  

The spatial expression patterns of Gb’myo, Gb’babo, Gb’dpp, Gb’tkv, Gb’jhamt, 

and Gb’CYP15A1 were also detected in the head with whole mount in situ hybridization. 

All of these genes were found to be predominantly expressed in the CA on day 3 of the 

7th instar (Fig. 3 G-M). Similar results were obtained when the transcripts of these genes 

were detected in the CA by qPCR (Fig. 3 N and O). Thus, it appears that expression of 

Gb’myo in the CA correlates with the regulation of Gb’jhamt expression and JH 

biosynthesis. 

Since both Gb’myo and Gb’dpp were found to be expressed in the CA, we 

investigated whether these genes are involved in the regulation of Gb’jhamt 

transcription. First, we confirmed that RNAi targeting of Gb’myo was effective in the 

heads of supernumerary nymphs (Fig. 4A). An increase in Gb’jhamt expression was also 

detected in the supernumerary instars on day 1 (3’-4th-4’), and these levels were 

significantly higher in these supernumerary nymphs on day 5 compared with the 
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undetectable levels of Gb’jhamt that characterized the controls (Fig. 4B). Consistent 

with the supernumerary molting of the nymphs that had received RNAi targeting 

Gb’smox, Gb’jhamt mRNA levels were up-regulated in 3’ and 4th nymphs on day 5 (Fig. 

S5B). In contrast, no significant changes were observed in each of the supernumerary 

instars that expressed the Gb’CYP15A1 transcript (Fig. 4C). When RNAi targeting 

Gb’mad (Fig. 4D), Gb’medea (Fig. S5C), or Gb’gbb (Fig. S5D) were injected into 3rd 

instars, Gb’jhamt transcript levels were lower in both the 4th and 6th instars on day 1; 

while no apparent effect on Gb’CYP15A1 mRNA levels were observed in the Gb’mad 

depleted nymphs (Fig. 4D). Taken together, these results demonstrate that precocious 

metamorphosis in nymphs that received RNAi targeting Gb’mad, Gb’medea, or Gb’gbb 

derives from repression of Gb’jhamt expression, and they also suggest that 

up-regulation of Gb’jhamt in nymphs that received RNAi targeting Gb’myo or Gb’smox 

may depend on timely regulation of the Gb’Dpp/Gbb signaling pathway. 

Following the injection of RNAi targeting Gb’jhamt into 3rd instar nymphs, 

precocious metamorphosis was observed, and these features were similar to those of 

RNAi depletion targeting Gb’mad (Fig. S6A). To examine whether the increase in 

Gb’jhamt expression caused by Gb’myo-targeted RNAi can be prevented with the 

knockdown of Gb’mad or Gb’jhamt, Gb’myo RNAi + Gb’mad RNAi and Gb’myo 

RNAi + Gb’jhamt RNAi were injected into 3rd instar nymphs (n = 9/12 and n = 15/16, 

respectively; Fig. S6 B and C). Changes in overall body size (Fig. S6 D and E) and 

relative transcript levels (Fig. S6F) were observed. Moreover, the supernumerary 

molting phenotype was rescued when Gb’jhamt was targeted for depletion. Thus, it 
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appears that supernumerary molts are caused by alterations in Gb’jhamt expression. 

However, the mechanisms underlying regulation of Gb’jhamt expression by Gb’Myo 

signaling are unknown. 

In recent studies, the transcriptional repressor, Brinker (Brk), has been found to 

be a Dpp target that negatively regulates Dpp signaling in Drosophila (26, 27). 

Therefore, we examined the levels of Gb’brk mRNA in nymphs that received RNAi 

targeting genes related to Gb’Dpp/Gbb signaling (Gb’mad, Gb’medea, and Gb’gbb) or 

Gb’Myo signaling (Gb’myo and Gb’smox). In the former experiments, depletion of 

Gb’mad (Fig. 4E), Gb’medea (Fig. S5C), and Gb’gbb (Fig. S5D) resulted in an increase 

in Gb’brk mRNA levels in 4th and 6th instar nymphs on day 1. These results suggest that 

Gb’brk expression is negatively regulated by Gb’Dpp/Gbb signaling (Fig. 5A). Thus, 

we speculated that the transcriptional repressor Gb’Brk plays a role in negatively 

regulating Gb’Dpp/Gbb signaling, and it may regulate the repression of Gb’jhamt. To 

examine the latter possibility, RNAi targeting Gb’brk was injected into 3rd instar 

nymphs. While the control animals exhibited normal molting, the majority of the 

Gb’brk RNAi-treated nymphs arrested in the early developmental stages (25 out of 27). 

In addition, increased expression of Gb’jhamt mRNA was detected in the Gb’brk 

RNAi-treated nymphs during the 4th and 6th instars on day 1, yet no effect was observed 

on day 5 (Fig. 4F). These results suggest that Gb’Brk may be associated with negative 

regulation of Gb’jhamt (Fig. 5B). To investigate whether the reduction in Gb’jhamt 

expression in the Gb’mad-depleted nymphs was due to concomitant up-regulation of 

Gb’brk (Fig. 5A), dual RNAi targeting Gb’mad and Gb’brk were both injected into 3rd 
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instar nymphs. Subsequently, Gb’mad RNAi-dependent repression of Gb’jhamt that 

previously was observed in the 4th and 6th instars on day 1 was not rescued by depletion 

of Gb’brk (Fig. 4F). Thus, repression of Gb’jhamt in the nymphs that received RNAi 

targeting Gb’mad appeared to be independent of increased Gb’brk expression (Fig. 5C). 

Consequently, our results suggest that both an up-regulation of Gb’jhamt and a 

down-regulation of Gb’brk are controlled by the Gb’Dpp/Gbb/Mad signaling pathway 

(Fig. 5 D and F). While Gb’brk expression was markedly decreased on days 1 or 5 in 

the supernumerary nymphs (3’ and 4th) with depletion of Gb’myo (Fig. 4E) and 

Gb’smox (Figs. S5B and 5D). Therefore, we propose that induction of Gb’jhamt and 

repression of Gb’brk that are dependent on the function of Gb’Mad may be blocked by 

Gb’Myo/Smox signaling (Fig. 5 E and F). 

Previous studies have showed that Daughters against dpp (dad) is an 

inhibitory-Smad that is able to genetically antagonize Dpp signaling in Drosophila (28). 

Regulation of dad has also been reported to be effected by the function of Mad and 

Smox (29). In order to understand how Gb’Myo signaling prevents Gb’Dpp/Gbb 

signaling, we investigated whether the Gb’Dpp/Gbb and Gb’Myo signaling pathways 

are associated with expression of Gb’dad. When RNAi targeting Gb’mad was injected 

into 3rd instar nymphs, lower levels of Gb’dad mRNA were detected (Fig. S5E). In 

contrast, depletion of Gb’smox by RNAi had no effect on Gb’dad expression (Fig. S5E). 

These results suggest that Gb’dad may represent downstream target gene of 

Gb’Dpp/Gbb signaling, and Gb’Myo signaling may regulate the expression of Gb’brk 

and Gb’jhamt through the control of Gb’Dpp/Gbb signaling pathway (Fig. 5 E and F).  
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Overall, the results of the experiments performed suggest that Gb’Myo signaling 

suppresses Gb’jhamt expression that is induced by Gb’Dpp/Gbb signaling, and this 

leads to an inhibition of JH biosynthesis and an induction of metamorphosis. 
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Discussion 

The results of the present study demonstrate that the TGF-β ligands, Gb’Dpp, 

Gb’Gbb, and Gb’Myo, regulate the synthesis of JH by regulating the expression of 

Gb’jhamt in the CA (Fig. 5F). As part of this process, transcription of the jhamt gene is 

controlled by the Dpp/Gbb/Tkv/Mad/Medea signaling pathway, while Myo/Babo/Smox 

signaling suppresses jhamt expression by controlling the Dpp/Gbb/Tkv/Mad/Medea 

signaling pathway. Expression of JHAMT in CA cells transforms JH acid into JH, and 

the latter is released into the hemolymph (Fig. 5F). We hypothesize that these regulatory 

mechanisms that determine the titre of JH are common in insects, including 

holometabola, for four reasons: 1) because the CA is a common endocrine gland which 

generates JH in insects; 2) Gb’Dpp functions in the CA similarly to Dm’Dpp in the CA 

of Drosophila (20); 3) Dm’Myoglianin (Dm’Myo), a homolog of Gb’Myo, is secreted 

by glial cells prior to metamorphosis to direct developmental neural remodeling (30); 

and 4) Gb’myo regulates final insect size via regulation of JH titre as observed in 

Drosophila (31).  

However, RNAi treatment is not equivalent to genetic null, therefore it may not 

be possible to demonstrate the precise regulatory relationship between smox, mad, brk, 

and jhamt due to incomplete knockdown. In addition, RNAi knockdown occurs 

throughout the whole-body, and cannot be specifically targeted to the CA. Thus, the 

knockdown of these genes by RNAi may occur in other tissues. For example, Gb’myo 

and Gb’dpp are also expressed in the brains of Gryllus bimaculatus nymphs (Fig. S5F), 

and the mechanisms that regulate Dpp and Myo production in the brain remain to be 
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determined. It has been proposed that allatotropic and allatostatic peptides may play a 

role (9, 32). However, the phenotypes observed following targeting of the allatostatin-A 

type gene by RNAi (33) differ from the phenotypes generated by Gb’myo RNAi, yet are 

similar to the phenotypes obtained following up-regulation of JH. Thus, no significant 

relations between allatostatins and Myo have been identified. On the other hand, in the 

Drosophila prothoracic gland (PG), knockdown of Activin/Babo/Smox pathway causes 

developmental arrest prior to metamorphosis owing to control the ecdysone 

biosynthesis through the regulation of PTTH and insulin signaling pathways (34). Our 

results show that in Gryllus bimaculatus nymphs, Gb’myo is also expressed in the 

thorax 1 (prothorax) including the PG (Fig. S5A). Thus, Gb’Myo/Babo/Smox signaling 

may be independently associated with both JH and ecdysone biosynthesis. It should be 

noted, however, that as yet no connection between Gb’Myo and ecdysone biosynthesis 

has been established in this study. Finally, in mice, Myostatin/GDF8, a homolog of 

Gb’Myo, is a potent inhibitor of skeletal muscle growth (19), while another homolog of 

GDF11 has been reported to inhibit muscle formation (35, 36). Thus, GDF8/11 function 

might be an important regulator of adult muscle size. These GDF members are likely to 

be evolutionarily conserved as a body-size regulator among animals. 

In conclusion, the present findings provide common regulatory mechanisms with 

TGF-β signaling to explain the endocrine control of invertebrate life cycles. We 

anticipate that further studies on regulation of the Gb’Myo signaling in the brain and PG 

will be of great interest. 
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Materials and Methods 

Animals. All adult and nymph two-spotted Gryllus bimaculatus crickets were reared at 

29 °C and 50% humidity under standard conditions as previously described (37). 

 

Cloning. Gryllus genes related to Dpp/Myo-signaling genes were cloned by RT-PCR 

from 3rd instar nymph cDNA samples using the gene-specific primers listed in Table S1. 

A putative full length cDNA sequence containing the open reading frame (ORF) of 

Gb’myo (864 bp) was deposited in DDBJ (accession no. LC128665). RT-PCR was done 

as described in SI Materials and Methods. 

 

RNA interference. The synthesis of RNAi was performed as described in SI Materials 

and Methods. Within 24 h after ecdysis, nymphs were injected with 20 µM RNAi in a 

volume of 0.2–0.5 µl into the ventral abdomen. RNAi targeting DsRed2 was injected as 

a negative control. In the dual RNAi experiments, a combination of RNAi targeting 

Gb’myo and Gb’jhamt, Gb’myo and Gb’mad, Gb’mad and Gb’brk, or Gb’dpp and 

Gb’gbb, each with a final concentration of 20 µM, were injected. 

 

Quantitative RT-PCR (qPCR). The qPCR primers used are listed in Table S2. RNA 

extraction, cDNA synthesis, and qPCR conditions are described in SI Materials and 

Methods.  

 

In situ hybridization. Digoxigenin (DIG)-labeled antisense RNA probes for Gb’myo, 
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Gb’babo, Gb’dpp, Gb’tkv, Gb’jhamt, and Gb’CYP15A1 cDNA fragments obtained by 

RT-PCR were used for whole-mount in situ hybridization. In situ hybridization was 

performed as described in SI Materials and Methods.  

 

JH extraction. G. bimaculatus nymphs were dissected and hemolymph (~5 ul per 

nymph) was extracted using methanol/isooctane (1:1, v/v) with 50ng fenoxycarb (Wako 

Pure Chemical Industries Ltd., Osaka, Japan) as an internal standard. Additional 

procedures for JH extraction are described in SI Materials and Methods. 

 

LC-MS. An Ultra Performance Liquid Chromatography (UPLC)-LCT Premier system 

(Waters, Milford, MA, USA) was equipped with a 50 × 2.1 mm2 C18 reverse phase 

column (ACQUITY UPLC BEH ODS-1.7 μm; Waters) that was protected by a 

VanGuard pre-column (Waters). Following the application of ACQUITY UPLC system, 

and was eluted with 100% methanol at a flow rate of 0.3 ml/min. MS analysis was 

performed as described in SI Materials and Methods. 

 

Hormone treatment. A JH analogue, methoprene, was dissolved in ethanol (Wako Pure 

Chemical Industries Ltd., Osaka, Japan) to a concentration of 100 μg/μl and then 

approximately 0.2 μl of this methoprene solution was injected into the ventral abdomen 

of newly molted 3rd or 5th instar nymphs (~20 μg of methoprene/nymph). The same 

volume of ethanol was injected as a control.  
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Figure Legends 

Fig. 1. Phenotypes observed after depletion of Gb’mad and Gb’tkv were achieved 

with RNAi in the nymph stage of Gryllus bimaculatus. (A and B) The effects of RNAi 

targeting Gb’mad or Gb’tkv in nymphs on day 1 of the 3rd instar. In each box, the 

control nymph is on the left and the RNAi-treated nymph is on the right. The instar and 

adult stages for each box are indicated at the bottom. The RNAi-treated nymphs 

remained small, yet underwent precocious adult metamorphosis at the 7th instar. (C and 

D) Body length (C) and weight (D) of the adults (male: ♂; and female: ♀) that 

developed following injections of RNAi targeting DsRed2 (as a control) or Gb’mad. 

The data presented are the mean ± SD. *, P < 0.05 according to Student’s t-test. (E) The 

wing pads (indicated with red asterisks) of the 6th instar Gb’mad RNAi nymphs 

exhibited abnormal growth and displayed an extended side. (F) The morphology of the 

ovipositor (indicated with arrows) in the Gb’mad RNAi 6th instar nymphs was smaller 

than that of the control nymphs (Figs. 2O and S4J). (G) Precocious adults were 

produced following the injection of RNAi targeting Gb’mad. The wings of these adults 

were significantly smaller and were wrinkled. (H) The ovipositors of the adults 

produced following the injection of RNAi targeting Gb’mad were cleaved at the tip and 

they became abnormally short. Scale bars: 10 mm in A and B; 2 mm in E, G, and H; and 

1 mm in F. 

 

Fig. 2. Phenotypes observed after depletion of Gb’myo was achieved with RNAi in 

Gryllus bimaculatus. (A and B) RNAi targeting DsRed2 (control) or Gb’myo were 
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injected into 3rd instars on day 1. Morphological variations during supernumerary molts 

(3’-3’’-4th-4’-4’’) and during metamorphosis were subsequently observed in A and B, 

respectively. In A, the control nymph is on the left and the RNAi-treated nymph is on 

the right in each box. The instar and adult stages for each box are indicated at the 

bottom (male: ♂; and female: ♀). (C-E) Lateral views of the 3rd (C), 4th (D), and 5th (E) 

instar nymphs that were injected with RNAi targeting DsRed2 on day 1 of the 3rd instar. 

The red lines indicate the contours of the wing pads (indicated with asterisks). T1-3; 

thorax 1-3. (F) Dorsal view of the wing pads (indicated with asterisks) in a 

representative 6th instar nymph that was injected with RNAi targeting DsRed2 on day 1 

of the 3rd instar. (G-J) Lateral views of supernumerary 3’ (G), 3’’ (H), 4’ (I), and 4’’ (J) 

instar nymphs that were injected with RNAi targeting Gb’myo on day 1 of the 3rd instar. 

(K) Dorsal view of a representative supernumerary 4’’ instar nymph that was injected 

with RNAi targeting Gb’myo on day 1 of the 3rd instar. (L-O) Ventral views of 3rd (L), 

4th (M), 5th (N), and 6th (O) instar nymphs that were injected with RNAi targeting 

DsRed2 on day 1 of the 3rd instar. Morphological alterations in the ovipositors 

(indicated with arrows) at the abdomen 8 (Abd8; indicated with arrowheads) were 

observed. (P-S) Ventral views of supernumerary 3’ (P), 3’’ (Q), 4’ (R), and 4’’ (S) instar 

nymphs that were injected with RNAi targeting Gb’myo on day 1 of the 3rd instar. (T 

and U) Body length (T) and weight (U) of nymphs and adults that were treated with 

RNAi targeting DsRed2 (black) or Gb’myo (red). Weeks post-injection (w) were 

indicated in the X-axis. The data presented are the mean ± SD. Scale bars: 10 mm in A 



2021/11/05 

29 

and B; 0.5 mm in C, and L-O; and 2 mm in F and K. 

 

Fig. 3. Expression profiles of Gb’myo, Gb’dpp, Gb’jhamt, and Gb’CYP15A1 

transcripts in Gryllus bimaculatus during development, and the effect of RNAi 

targeting Gb’myo and Gb’mad on the hemolymph titre of JH. (A) Developmental 

changes in JH III titre in the hemolymph of male (dotted line) and female (solid line) 

nymphs that were collected from 4th to 8th instars. (B) JH III titre measurements in the 

hemolymph of nymphs treated with RNAi targeting Gb’myo (red) or Gb’mad (blue) in 

the 3rd instar. Asterisks represent significant differences between control and RNAi 

nymphs: *, P < 0.05 according to Student’s t-test. (C-F) Temporal expression of 

Gb’myo (C), Gb’dpp (D), Gb’jhamt (E), and Gb’CYP15A1 (F) as detected in qPCR 

analyses of nymph heads. Relative fold changes in the mRNA levels were plotted, and 

the average expression level in the heads on day 1 of the 3rd instar (D1 3rd) was set to 1. 

The mRNA levels were also normalized to Gb’β-actin mRNA levels. Developmental 

stages were defined as days (D) after molting. Nymphs were unsexed during the 3rd to 

5th instars and were sexed during the 6th to 8th instars and the adult (ad) stage (male data: 

dotted line; female data: solid line). The data presented are the mean ± SD. (G-M) 

Expression levels of Gb’myo (G), Gb’baboon (H), Gb’dpp (I), Gb’tkv (J), Gb’jhamt (K), 

and Gb’CYP15A1 (L) in the corpus allatum-corpus cardiacum (CA-CC) complex on day 

3 of the 7th instar were examined by whole-mount in situ hybridization. A control 

experiment using the Gb’myo sense probe is shown in M. (N and O) Expression levels 

of Gb’myo, Gb’dpp, Gb’jhamt, and Gb’CYP15A1 as detected in qPCR analyses of RNA 
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samples collected from the CA (N) and CC (O) of 7th instar nymphs. The expression 

level of Gb’jhamt was set to 1. The data presented are the mean ± SD. 

 

Fig. 4. The effects of RNAi-mediated depletion of Gb’myo and Gb’mad on the 

expression of Gb’jhamt, Gb’CYP15A1, and Gb’brk. (A-C) RNAi targeting DsRed2 

control or Gb’myo were injected on day 1 of the 3rd instar. Transcript levels of Gb’myo 

(A), Gb’jhamt (B), and Gb’CYP15A1 (C) were subsequently determined on days 1 and 5 

in the heads of the supernumerary 3rd, 3’, 4th, and 4’ instars. The transcript levels 

determined on day 1 of the 3rd instar control nymphs (D1 3rd) for panels A-C were set to 

1. The data presented are the mean ± SD. (D) Transcript levels of Gb’mad, Gb’jhamt, 

and Gb’CYP15A1 were also determined on day 1 of the 4th and 6th instars following the 

injection of RNAi targeting Gb’mad. The transcript levels of these genes in control 

nymphs on day 1 of the 4th instar (D1 4th) were set to 1. The data presented are the mean 

± SD. (E) Gb’brk mRNA levels in the heads of 4th (3’) and 6th (4th) instar nymphs on 

days 1 and 5 after the injection of RNAi targeting Gb’myo (red), and on day 1 for the 4th 

and 6th instar nymphs that received RNAi targeting Gb’mad (blue). The transcript levels 

of both sets of control nymphs on day 1 of the 4th instar were set to 1. The data 

presented are the mean ± SD. (F) Following RNAi-mediated depletion of Gb’brk 

(green) or Gb’mad + Gb’brk (yellow) in the 3rd instar transcript levels of Gb’brk or 

Gb’jhamt were measured on days 1 and 5 of the 4th and 6th instars as indicated. The 

transcript levels measured on day 5 (D5 4th) or day 1 (D1 4th) of the control 4th instar 

nymphs were set to 1, respectively. The data presented are the mean ± SD. Asterisks in 
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A, B, and D-F represent significant differences between the control and RNAi nymphs. 

n.s., not significant; *, P < 0.05; **, P < 0.005; ***, P < 0.001 according to Student’s 

t-test. 

 

Fig. 5. Regulation of Gb’jhamt expression. (A-E) Schematic diagrams of Gb’brk and 

Gb’jhamt transcriptional regulation based on the results obtained from experiments that 

involved the targeting of Gb’mad (A and E), Gb’brk (B), Gb’mad + Gb’brk (C), and 

Gb’smox (D) genes by RNAi. Gray colors denote gene depletion and transcriptional 

regulatory effects by RNAi. Red arrows indicate the down- and up-regulation of target 

gene expression. (F) This diagram depicts the function of Dpp/Gbb (blue) and Myo 

(pink) signaling pathways in the regulation of jhamt expression and JH action. 
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