44 research outputs found

    Accumulation of L-type Bovine Prions in Peripheral Nerve Tissues

    Get PDF
    We recently reported the intraspecies transmission of L-type atypical bovine spongiform encephalopathy (BSE). To clarify the peripheral pathogenesis of L-type BSE, we studied prion distribution in nerve and lymphoid tissues obtained from experimentally challenged cattle. As with classical BSE prions, L-type BSE prions accumulated in central and peripheral nerve tissues

    Realization of high Ti plasmas and confinement characteristics of ITB plasmas in the LHD deuterium experiments

    Get PDF
    The deuterium (D) operation was initiated in the LHD in 2017. In the first campaign of the D experiments, we successfully extended the high temperature regime in the LHD. The new record of the ion temperature (Ti) of 10 keV associated with the ion internal transport barrier (ITB) was achieved due to several operational optimization. The thermal confinement characteristics of ITB plasmas were compared between hydrogen and D discharges. The effective ion thermal diffusivity of the ion-ITB plasmas was found to be smaller in the D discharges than that in the H discharges. The profiles of the Ti, the electron density, and the impurity of the high Ti plasmas strongly depended on the magnetic configuration and these profiles tended to peaked in the inward-shifted configuration. It was also found that the electron thermal confinement of the electron-ITB plasmas was clearly improved in the deuterium case. The GKV simulation showed the linear growth rate of TEM/ITG reduced in the plasmas with D both for the ion ITB and the electron ITB plasmas and qualitatively agreed with the tendency of the change in the thermal diffusivity obtained from the power balance analysis

    Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    Get PDF
    A simultaneous high ion temperature (Ti) and high electron temperature (Te) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of Te/Ti by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity χi/Ti1.5{{\chi}_{\text{i}}}/T_{\text{i}}^{1.5} at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in Ti in the entire plasma region, even though the core transport was degraded
    corecore