371 research outputs found

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    IMPROVED RESISTANCE FURNACES FOR MOLTEN SALT EXTRACTION PROCESS.

    Get PDF

    Structure and Stability of Si(114)-(2x1)

    Full text link
    We describe a recently discovered stable planar surface of silicon, Si(114). This high-index surface, oriented 19.5 degrees away from (001) toward (111), undergoes a 2x1 reconstruction. We propose a complete model for the reconstructed surface based on scanning tunneling microscopy images and first-principles total-energy calculations. The structure and stability of Si(114)-(2x1) arises from a balance between surface dangling bond reduction and surface stress relief, and provides a key to understanding the morphology of a family of surfaces oriented between (001) and (114).Comment: REVTeX, 4 pages + 3 figures. A preprint with high-resolution figures is available at http://cst-www.nrl.navy.mil/papers/si114.ps . To be published in Phys. Rev. Let

    Separable Dual Space Gaussian Pseudo-potentials

    Full text link
    We present pseudo-potential coefficients for the first two rows of the periodic table. The pseudo potential is of a novel analytic form, that gives optimal efficiency in numerical calculations using plane waves as basis set. At most 7 coefficients are necessary to specify its analytic form. It is separable and has optimal decay properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the pseudo-potential to a wave-function can be done in an efficient way on a grid in real space. Real space integration is much faster for large systems than ordinary multiplication in Fourier space since it shows only quadratic scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure

    Surface Quality of a Work Material Influence on Vibrations in a Cutting Process

    Full text link
    The problem of stability in the machining processes is an important task. It is strictly connected with the final quality of a product. In this paper we consider vibrations of a tool-workpiece system in a straight turning process induced by random disturbances and their effect on a product surface. Basing on experimentally obtained system parameters we have done the simulations using one degree of freedom model. The noise has been introduced to the model by the Langevin equation. We have also analyzed the product surface shape and its dependence on the level of noise.Comment: 12 pages, PDF of figures can be obtained from http://archimedes.pol.lublin.pl/~raf/graf/fpic.pd

    Singular Structure and Enhanced Friedel Oscillations in the Two-Dimensional Electron Gas

    Full text link
    We calculate the leading order corrections (in rsr_s) to the static polarization Π(q,0,)\Pi^{*}(q,0,), with dynamically screened interactions, for the two-dimensional electron gas. The corresponding diagrams all exhibit singular logarithmic behavior in their derivatives at q=2kFq=2 k_F and provide significant enhancement to the proper polarization particularly at low densities. At a density of rs=3r_s=3, the contribution from the leading order {\em fluctuational} diagrams exceeds both the zeroth order (Lindhard) response and the self-energy and exchange contributions. We comment on the importance of these diagrams in two-dimensions and make comparisons to an equivalent three-dimensional electron gas; we also consider the impact these finding have on Π(q,0)\Pi^{*}(q,0) computed to all orders in perturbation theory

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    Thermodynamic aspects of materials' hardness: prediction of novel superhard high-pressure phases

    Full text link
    In the present work we have proposed the method that allows one to easily estimate hardness and bulk modulus of known or hypothetical solid phases from the data on Gibbs energy of atomization of the elements and corresponding covalent radii. It has been shown that hardness and bulk moduli of compounds strongly correlate with their thermodynamic and structural properties. The proposed method may be used for a large number of compounds with various types of chemical bonding and structures; moreover, the temperature dependence of hardness may be calculated, that has been performed for diamond and cubic boron nitride. The correctness of this approach has been shown for the recently synthesized superhard diamond-like BC5. It has been predicted that the hypothetical forms of B2O3, diamond-like boron, BCx and COx, which could be synthesized at high pressures and temperatures, should have extreme hardness

    A critical assessment of the Self-Interaction Corrected Local Density Functional method and its algorithmic implementation

    Full text link
    We calculate the electronic structure of several atoms and small molecules by direct minimization of the Self-Interaction Corrected Local Density Approximation (SIC-LDA) functional. To do this we first derive an expression for the gradient of this functional under the constraint that the orbitals be orthogonal and show that previously given expressions do not correctly incorporate this constraint. In our atomic calculations the SIC-LDA yields total energies, ionization energies and charge densities that are superior to results obtained with the Local Density Approximation (LDA). However, for molecules SIC-LDA gives bond lengths and reaction energies that are inferior to those obtained from LDA. The nonlocal BLYP functional, which we include as a representative GGA functional, outperforms both LDA and SIC-LDA for all ground state properties we considered.Comment: 14 pages, 5 figure
    corecore