12 research outputs found

    Belief Revision and Delusions: How Do Patients with Schizophrenia Take Advice?

    Get PDF
    The dominant cognitive model that accounts for the persistence of delusional beliefs in schizophrenia postulates that patients suffer from a general deficit in belief revision. It is generally assumed that this deficit is a consequence of impaired reasoning skills. However, the possibility that such inflexibility affects the entire system of a patient's beliefs has rarely been empirically tested. Using delusion-neutral material in a well-documented advice-taking task, the present study reports that patients with schizophrenia: 1) revise their beliefs, 2) take into account socially provided information to do so, 3) are not overconfident about their judgments, and 4) show less egocentric advice-discounting than controls. This study thus shows that delusional patients' difficulty in revising beliefs is more selective than had been previously assumed. The specificities of the task and the implications for a theory of delusion formation are discussed

    A comprehensive model for the amplification of acoustic pressure waves by single hole orifices.

    No full text
    Using a parallel flow approximation, a simple model of hydrodynamic instability is proposed for describing the behavior of an orifice as an acoustic amplifier. It is shown that the growing of perturbations in the vena contracta can generate negative damping for Strouhal numbers of the order of 0.2-0.5. Experimental data are provided to support the modelization: a qualitative agreement is obtained

    Cavitating orifice : flow regime transitions and low frequency sound production

    No full text
    Detailed data are provided for the broadband noise in a cavitating pipe flow through a circular orifice in water. Experiments are performed under industrial conditions, i.e., with a pressure drop varying from 3 to 30 bars and a cavitation number in the range 0.10 = s = 0.77. The speed of sound downstream of the orifice happens to vary spontaneously for a given set of hydraulic conditions. In the intermediate ‘developed cavitation’ regime, whistling associated with periodic vortex shedding is observed. In the ‘super cavitation’ regime, a vapor cloud develops itself and the whistling disappears. The broadband noise in each regime is presented and its dimensionless representation is discussed

    Study Of The Cavitation Induced By A High Power Laser Beam

    No full text
    International audienc

    An acoustic criterion for the whistling of orifices in pipes

    No full text
    Whistling due to vortex shedding has been extensively studied in the case of cylinders in cross-flows, of flow separation above cavities and of shear layers with flow impingement feedback. Less attention has been given to pressure drop devices in piping systems, which are known to generate high noise levels due to single tones in gas systems, and even in water systems. Based on recent work of Auregan et Starobinski (1999), an experimental criterion is proposed to evaluate the whistling ability of a pressure drop device in the presence of plane waves acoustic feedback. The idea of the criterion can be summarized as follows: if for a given combination of incident pressure waves, the amount of acoustic power scattered is higher than the incident one, the pressure drop device behaves as an acoustic amplifier, so that whistling can occur if the adequate acoustic boundary conditions are met. The main advantage of this criterion is that it depends only on the acoustic scattering matrix of the device, rather than on the acoustics of the surrounding pipe. Results obtained in an air test rig with an inner diameter of 3 cm, a Mach number varying from 10−3 to 10−1 and a Reynolds number varying from 103 to 105 are reported for single hole orifices. Basing the Strouhal number on the thickness of the orifice and on the average velocity through the hole, thin single hole orifices with sharp angles appear to whistle at Strouhal numbers close to 0.2. Furthermore, it is shown that a thin orifice with a downstream bevel is prone to whistling, whereas the same orifice with the bevel upstream cannot whistle
    corecore