19 research outputs found
Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria
Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates
Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.
Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Haemoglobin Genotype, ABO/Rhesus Blood Groups and Malaria among Students Presenting to a Private University Health Centre in Nigeria
Comparative serologic profiles of hepatitis B Virus (HBV) between HIV/HBV co-infected and Hbv mono-infected patients in Ile-Ife, Nigeria
Prevalence of Hepatitis B Virus (HBV) Basal Core Promoter/Precore region molecular variants among HIV/HBV co-infected and HBV mono-infected patients in Ile-Ife, Nigeria
AbstractIntroductionEvolution of phenotypic diversity among viruses occurs as an escape mechanism against host immune pressure or drug selective pressure. Among HIV/HBV co-infected individuals, various HBV basal core promoter (BCP)/precore (PC) region molecular mutants had been reported with associated phenotypic defect in HBeAg production. The emergence of HBeAg negative variants of HBV in HIV co-infected individuals have profound implication on the diagnosis, management and prognosis of this subset of individuals. This includes delayed clearance of HBV, early development of adverse hepatic events such as liver cirrhosis and hepatocellular carcinoma. Currently, little is known about HBV BCP/PC region genomic heterogeneity in HIV/HBV co-infected patients in Nigeria. Therefore, this study was focussed on investigating evidence of precore/core region genomic variability among HIV/HBV co-infected patients in Nigeria.Materials and methodsA total of 40 patients (20 HIV/HBV co-infected and 20 HBV mono-infected samples) were enrolled into the study and subsequently tested for HBsAg, HBeAg and HBeAb using specific Enzyme-Linked Immunosorbent Assay (ELISA). The BCP/PC genome regions (nucleotides 1653-1959) were amplified using a nested PCR assay and then subjected to BCP/PC mutational analysis in genome sites affecting HBeAg expression especially at the BCP transcriptional and PC Translational stop codon sites.ResultsOverall, 5(83.3%) of the six exploitable sequences after analysis showed various BCP/PC mutations. Only 1(16.6%) sequence from an HIV/HBV co-infected patient had the BCP transcriptional (double mutation; A1762T/G1764A) mutant. Analysis of the PC translational stop codon showed 4 (66.6%) having the G1896A mutants while 33.3% (2) had G1899A mutants.ConclusionThis study has broadened the available evidence of BCP/PC region molecular mutants among HIV/HBV co-infected patients in Nigeria and assessed the difference of mutation prevalence in comparison with HBV mono-infected cohort. We therefore recommend that HIV/HBV co-infected patients be routinely screened for hepatitis B virus precore region mutants to improve their patient outcome.</jats:sec
Infectious disease outbreak preparedness and response in Nigeria: history, limitations and recommendations for global health policy and practice
Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time
AbstractViral hemorrhagic fevers (VHFs) remain some of the most devastating human diseases, and recent outbreaks of Ebola virus disease (EVD) 1,2 and Lassa fever (LF) 3,4 highlight the urgent need for sensitive, field-deployable tests to diagnose them 5,6. Here we develop CRISPR-Cas13a-based (SHERLOCK) diagnostics targeting Ebola virus (EBOV) and Lassa virus (LASV), with both fluorescent and lateral flow readouts. We demonstrate on laboratory and clinical samples the sensitivity of these assays and the capacity of the SHERLOCK platform to handle virus-specific diagnostic challenges. Our EBOV diagnostic detects both the L and NP genes, thereby eliminating the potential for false positive results caused by the rVSVΔG-ZEBOV-GP live attenuated vaccine. Our two LASV diagnostics together capture 90% of known viral diversity and demonstrate that CRISPR-RNAs (crRNAs) can be effectively multiplexed to provide greater coverage of known viral diversity. We performed safety testing to demonstrate the efficacy of our HUDSON protocol in heat-inactivating and chemically treating VHF viruses before SHERLOCK testing, eliminating the need for an extraction. We developed a user-friendly field protocol and mobile application (HandLens) to report results, facilitating SHERLOCK’s use in endemic regions. Finally, we successfully deployed our tests in Sierra Leone and Nigeria in response to recent outbreaks.</jats:p
