1,358 research outputs found

    Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley

    Get PDF
    Producing sufficient food for nine billion people by 2050 will be constrained by soil salinity, especially in irrigated systems. To improve crop yield, greater understanding of the genetic control of traits contributing to salinity tolerance in the field is needed. Here, we exploit natural variation in exotic germplasm by taking a genome-wide association approach to a new nested association mapping population of barley called HEB-25. The large population (1,336 genotypes) allowed cross-validation of loci, which, along with two years of phenotypic data collected from plants irrigated with fresh and saline water, improved statistical power. We dissect the genetic architecture of flowering time under high salinity and we present genes putatively affecting this trait and salinity tolerance. In addition, we identify a locus on chromosome 2H where, under saline conditions, lines homozygous for the wild allele yielded 30% more than did lines homozygous for the Barke allele. Introgressing this wild allele into elite cultivars could markedly improve yield under saline conditions.Stephanie Saade, Andreas Maurer, Mohammed Shahid, Helena Oakey, Sandra M. Schmöckel, Sónia Negrão, Klaus Pillen and Mark Teste

    Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    Get PDF
    Background: Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results: A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions: Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion-independent stress and shoot ion dependent stress) makes it a useful tool for genetic and physiological studies to elucidate processes that contribute to salinity tolerance in rice. The technique has the potential for identifying the genetic basis of these mechanisms and assisting in pyramiding different tolerance mechanisms into breeding lines.Aris Hairmansis, Bettina Berger, Mark Tester, and Stuart John Ro

    Different NaCl-induced calcium signatures in the arabidopsis thaliana ecotypes Col-0 and C24

    Get PDF
    A common feature of stress signalling pathways are alterations in the concentration of cytosolic free calcium ([Ca2+]cyt), which allow the specific and rapid transmission of stress signals through a plant after exposure to a stress, such as salinity. Here, we used an aequorin based bioluminescence assay to compare the NaCl-induced changes in [Ca2+]cyt of the Arabidopsis ecotypes Col-0 and C24. We show that C24 lacks the NaCl specific component of the [Ca2+]cyt signature compared to Col-0. This phenotypic variation could be exploited as a screening methodology for the identification of yet unknown components in the early stages of the salt signalling pathway.Sandra M. Schmöckel, Alexandre F. Garcia, Bettina Berger, Mark Tester, Alex A. R. Webb, Stuart J. Ro

    Effect of Human Disturbance on Small Mammal Communities in Itasca State Park, Minnesota

    Get PDF
    We determined effects of different levels of human disturbance on small mammal richness and relative abundance from live-trapping data obtained in Itasca State Park in northwestern Minnesota. We developed a quantitative measure of human disturbance based on disturbance units and trapped small mammals on three study sites, each reflecting a different level of disturbance. Our data revealed that small mammal diversity decreased with increasing human disturbance. Amount of ground cover and litter depth also appeared to be important in explaining differences in the demographic patterns of small mammals among sites

    LPS Responsiveness and Neutrophil Chemotaxis In Vivo Require PMN MMP-8 Activity

    Get PDF
    We identify matrix metalloproteinase (MMP)-8, the polymorphonuclear (PMN) leukocyte collagenase, as a critical mediator initiating lipopolysaccharide (LPS)-responsiveness in vivo. PMN infiltration towards LPS is abrogated in Mmp8-null mice. MMP-8 cleaves LPS-induced CXC chemokine (LIX) at Ser(4)∼Val(5) and Lys(79)∼Arg(80). LIX bioactivity is increased upon N-terminal cleavage, enhancing intracellular calcium mobilization and chemotaxis upon binding its cognate receptor, CXCR2. As there is no difference in PMN chemotaxis in Mmp8-null mice compared with wild-type mice towards synthetic analogues of MMP-8-cleaved LIX, MMP-8 is not essential for extravasation or cell migration in collagenous matrices in vivo. However, with biochemical redundancy between MMPs 1, 2, 9, and 13, which also cleave LIX at position 4∼5, it was surprising to observe such a markedly reduced PMN infiltration towards LPS and LIX in Mmp8-/- mice. This lack of physiological redundancy in vivo identifies MMP-8 as a key mediator in the regulation of innate immunity. Comparable results were found with CXCL8/IL-8 and CXCL5/ENA-78, the human orthologues of LIX. MMP-8 cleaves CXCL8 at Arg(5)-Ser(6) and at Val(7)-Leu(8) in CXCL5 to activate respective chemokines. Hence, rather than collagen, these PMN chemoattractants are important MMP-8 substrates in vivo; PMN-derived MMP-8 cleaves and activates LIX to execute an in cis PMN-controlled feed-forward mechanism to orchestrate the initial inflammatory response and promote LPS responsiveness in tissue
    • …
    corecore