2,083 research outputs found

    Prediction of the acoustic impedance of duct liners

    Get PDF
    Recent research which contributes to the prediction of the acoustic impedance of duct liners is reviewed. This review includes the linear and nonlinear properties of sheet and bulk type materials and methods for the measurement of these properties. It also includes the effect of grazing flow on the acoustic properties of materials. Methods for predicting the properties of single or multilayered, point reacting or extended reaction, and flat or curved liners are discussed. Based on this review, methods for predicting the properties of the duct liners which are typically used in aircraft engines are recommended. Some areas of needed research are discussed briefly

    The noise and flow characteristics of inverted-profile coannular jets

    Get PDF
    A basic understanding of the noise reduction mechanisms in shock-free inverted-velocity-profile coannular jets was studied. Acoustic measurements are first conducted in an anechoic facility to isolate the effects of inverted velocity and inverted temperature for coannular jets having constant total thrust, mass flow rate and exit area. To obtain physical explanations of the measured noise changes, several types of experiments are conducted. These include (1) source location experiments using the polar correlation technique, (2) mean flow surveys using a combination pressure/temperature probe, and (3) detailed mean flow and turbulence measurements using a two-point four-channel laser velocimeter. The results from these experiments are presented and discussed in detail. Finally, the measured variations of coannular jet mixing noise with fan-to-primary velocity ratio and static temperature ratio are interpreted by utilizing the results from the various experimental phases in conjunction with the existing Lockheed single jet noise prediction model

    Home and Native Land: Aboriginal Rights and the Canadian Constitution, by Michael Asch

    Get PDF

    The free jet as a simulator of forward velocity effects on jet noise

    Get PDF
    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise

    Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology

    Get PDF
    The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.A general evaluation of the technical feasibility of HDR technology components was also conducted in view of their importance in establishing drilling and reservoir performance parameters required for any economic assessment (see Sections 2-5). In our review, only economic projections for base load electricity produced from HDR systems were considered. Bases of 1989 dollars ($) were selected to normalize costs.Following the evaluation of drilling and reservoir performance, power plant choices and cost estimates are discussed in Section 6. In Section 7, the six economic studies cited earlier are reviewed and compared in terms of their key resource, reservoir and plant performance, and cost assumptions. Based on these comparisons, we have estimated parameters for three composite cases. Important parameters include: (1) resource quality--average geothermal gradient (oC/km) and well depth, (2) reservoir performance--effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components--drilling, reservoir formation, and power plant costs and (4) economic factors--discount and interest rates, taxes, etc. In Section 8, composite case conditions were used to reassess economic projections for HDRproduced electricity. In Section 9, a generalized economic model for HDR-produced electricity is presented to show the effects of resource grade, reservoir performance parameters, and other important factors on projected costs. A sensitivity and uncertainty analysis using this model is given in Section 10. Section 11 treats a modification of the economic model for predicting costs for direct, non-electric applications. HDR economic projections for the U.S. are broken down by region in Section 12. In Section 13, we provide recommendations for continued research and development to reduce technical and economic uncertainties relevant to the commercialization of HDR

    Cofinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures

    Full text link
    We use discontinuous molecular dynamics and grand-canonical transition-matrix Monte Carlo simulations to explore how confinement between parallel hard walls modifies the relationships between packing fraction, self-diffusivity, partial molar excess entropy, and total excess entropy for binary hard-sphere mixtures. To accomplish this, we introduce an efficient algorithm to calculate partial molar excess entropies from the transition-matrix Monte Carlo simulation data. We find that the species-dependent self-diffusivities of confined fluids are very similar to those of the bulk mixture if compared at the same, appropriately defined, packing fraction up to intermediate values, but then deviate negatively from the bulk behavior at higher packing fractions. On the other hand, the relationships between self-diffusivity and partial molar excess entropy (or total excess entropy) observed in the bulk fluid are preserved under confinement even at relatively high packing fractions and for different mixture compositions. This suggests that the partial molar excess entropy, calculable from classical density functional theories of inhomogeneous fluids, can be used to predict some of the nontrivial dynamical behaviors of fluid mixtures in confined environments.Comment: submitted to JC

    Effects of environmental variables on invasive amphibian activity: using model selection on quantiles for counts

    Get PDF
    Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity

    Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells

    Get PDF
    Free oxygen radicals are an irrefutable component of life, underlying important biochemical and physiological phenomena in animals. Here it is shown that free oxygen radicals activate plasma membrane Ca²⁺- and K⁺-permeable conductances in Arabidopsis root cell protoplasts, mediating Ca²⁺ influx and K⁺ efflux, respectively. Free oxygen radicals generate increases in cytosolic Ca²⁺ mediated by a novel population of nonselective cation channels that differ in selectivity and pharmacology from those involved in toxic Na⁺ influx. Analysis of the free oxygen radical-activated K⁺ conductance showed its similarity to the Arabidopsis root K⁺ outward rectifier. Significantly larger channel activation was found in cells responsible for perceiving environmental signals and undergoing elongation. Quenching root free oxygen radicals inhibited root elongation, confirming the role of radical-activated Ca²⁺ influx in cell growth. Net free oxygen radical-stimulated Ca²⁺ influx and K⁺ efflux were observed in root cells of monocots, dicots, C3 and C4 plants, suggesting conserved mechanisms and functions. In conclusion, two functions for free oxygen radical cation channel activation are proposed: initialization/amplification of stress signals and control of cell elongation in root growth.Vadim Demidchik, Sergey N. Shabala, Katherine B. Coutts, Mark A. Tester and Julia M. Davie

    SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl(-) accumulation and salt tolerance in Arabidopsis thaliana

    Get PDF
    Formally published in vol. 67, no. 15, 2016Salinity tolerance is correlated with shoot chloride (Cl⁻) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl⁻ transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl⁻, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl⁻ supply, but not low Cl⁻ supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl⁻ transport.Jiaen Qiu, Sam W Henderson, Mark Tester, Stuart J Roy and Mathew Gilliha
    corecore