572 research outputs found

    Investigations of cellular automata-based stream ciphers

    Get PDF
    In this thesis paper, we survey the literature arising from Stephan Wolfram\u27s original paper, “Cryptography with Cellular Automata” [WOL86] that first suggested stream ciphers could be constructed with cellular automata. All published research directly and indirectly quoting this paper are summarized up until the present. We also present a novel stream cipher design called Sum4 that is shown to have good randomness properties and resistance to approximation using linear finite shift registers. Sum4 is further studied to determine its effective strength with respect to key size given that an attack with a SAT solver is more efficient than a bruteforce attack. Lastly, we give ideas for further research into improving the Sum4 cipher

    Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma.

    Get PDF
    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher\u27s exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the Truncal loss (root loss) found additional correlations between biomarker losses and tumor stages than the traditional Loss in tumor (total) . Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus Truncal Loss analysis revealed hidden links between protein losses and patient survival in ccRCC

    Genomic imbalances in peripheral blood confirm the diagnosis of myelodysplastic syndrome in a patient presenting with non-immune hemolytic anemia

    Get PDF
    Myelodysplastic syndrome (MDS) is a clonal stem-cell disorder characterized by dyshematopoiesis. We report a patient who presented with cytopenias and microangiopathic hemolytic anemia. Chromosome microarray analysis (CMA), using single nucleotide polymorphism arrays, on peripheral blood revealed genomic imbalances indicative of MDS, which was confirmed by bone marrow examination. This report highlights the importance of suspecting MDS in patients with cytopenias and microangiopathic hemolytic anemia. CMA of peripheral blood may assist in the preliminary diagnosis of MDS, representing a comparatively less invasive diagnostic procedure and may aid bone marrow evaluation when an aspirate sample is insufficient for conventional cytogenetic analysis

    Malignant Mesothelioma

    Get PDF
    Review on mesothelioma, with data on clinics, and the genes involved

    PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth.

    Get PDF
    p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive. PBRM1, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as CDKN1A (p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes

    Probing the Transition to Dataset-Level Privacy in ML Models Using an Output-Specific and Data-Resolved Privacy Profile

    Full text link
    Differential privacy (DP) is the prevailing technique for protecting user data in machine learning models. However, deficits to this framework include a lack of clarity for selecting the privacy budget ϵ\epsilon and a lack of quantification for the privacy leakage for a particular data row by a particular trained model. We make progress toward these limitations and a new perspective by which to visualize DP results by studying a privacy metric that quantifies the extent to which a model trained on a dataset using a DP mechanism is ``covered" by each of the distributions resulting from training on neighboring datasets. We connect this coverage metric to what has been established in the literature and use it to rank the privacy of individual samples from the training set in what we call a privacy profile. We additionally show that the privacy profile can be used to probe an observed transition to indistinguishability that takes place in the neighboring distributions as ϵ\epsilon decreases, which we suggest is a tool that can enable the selection of ϵ\epsilon by the ML practitioner wishing to make use of DP.Comment: Approved for Public Release; Distribution Unlimited. PA #:AFRL-2022-363

    Observations from a prospective small cohort study suggest that CGRP genes contribute to acute posttraumatic headache burden after concussion

    Get PDF
    Introduction: Post-traumatic headache (PTH) is commonly reported after concussion. Calcitonin gene-related peptide (CGRP) is implicated in the pathogenesis of migraine. We explored how single nucleotide polymorphisms (SNPs) from CGRP-alpha (CALCA) and the receptor activity modifying protein-1 (RAMP1) related to headache burden during the first week after concussion. Methods: A prospective study was performed in 34 collegiate athletes who sustained a concussion. Participants completed the symptom evaluation checklist from the SCAT3 within 48 h of injury (V1), and again 4 (V2) and 7 (V3) days after injury. For each visit, the self-reported score (0–6) for headache, pressure in head, blurred vision, and sensitivity to light/noise were reported and summed to calculate the headache burden. A saliva sample was obtained and genotyped for CALCA (rs3781719) and RAMP1 (rs10185142). RAMP1 (TT, TC, CC) and CALCA (AA, AG, GG) were dichotomized (A+, A- and T+, T-, respectively), and concatenated (T+A+, T+A-, T-A+, T-A-) for analyses. Results: Headache Burden at Visit 1 was greatest in T+A+ compared to T-A+, and trended toward a significant difference with T+A-. Repeated-measures ANOVA revealed the presence of significant visit main effects (p < 0.001, η2 = 0.404), but the group (p = 0.055) and interaction effects only trended (p = 0.094). Pearson's χ2-tests revealed that 88% of those with return-to play (RTP) exclusions ≥15 days had PTH with multi-sensory symptoms (PTH+SENS) as compared to 35% in those with RTP < 14 day. Conclusion: Knowledge of RAMP1 and CALCA genotypes appear to improve an understanding the presenting features and magnitude of headache burden after concussion injury
    corecore