7,546 research outputs found

    Soil Remediation Via Environmentally Processed Asphalt (EPA)

    Get PDF
    Several methodologies are available for the remediation of contaminated soils including bioremediation, vapor extraction, chemical fixation, incineration and direct disposal. A proven innovative and cost effective alternative for the fixation of contaminated soils is via cold-mix Environmentally Processed Asphalt (EPA). EPA methodology utilizes contaminated soil as an ingredient in an industrial process to produce a commercially viable product. Petroleum hydrocarbon and metal affected soil is incorporated with an asphalt emulsion and aggregate to produce a range of cold-mix asphalt product that fulfills the requirements of a variety of end uses. This viable and creative use which is within the intent and spirit of current regulations is producing, in lieu of a landfill waste, an end product for use as a berm, road base, liner, or other site specific application. Consideration of certain factors including durability, chemical resistance and ageing, biological resistance, permeability, and leachability suggests that cold-mix asphalt incorporation of affected soil will perform more than adequately under normal conditions for a long period of time

    A Comment on "A note on polarized light from Magnetars: QED effects and axion-like particles" by L.M. Capparelli, L. Maiani and A.D. Polosa

    Full text link
    The recent detection of a large polarization degree in the optical emission of an isolated neutron star led to the suggestion that this has been the first evidence of vacuum polarization in a strong magnetic field, an effect predicted by quantum electrodynamics but never observed before. This claim was challanged in a paper by Capparelli, Maiani & Polosa (2017), according to whom a much higher polarization degree would be necessary to positively identify vacuum polarization. Here we show that their conclusions are biased by several inadequate assumptions and have no impact on the original claim.Comment: 10 pages, 2 figure

    Optimisation and application of ICP-MS and alpha-spectrometry for determination of isotopic ratios of depleted uranium and plutonium in samples collected in Kosovo

    Get PDF
    The determination of environmental contamination with natural and artificial actinide isotopes and evaluation of their source requires precise isotopic determination of actinides, above all uranium and plutonium. This can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation of actinides. The performance of a sector-field ICP-MS (ICP-SFMS) coupled to a low-flow micronebulizer with a membrane desolvation unit, "Aridus'', was studied with respect to precise isotopic measurements of uranium and plutonium at the ultratrace level. The UH+/U+ formation rate was about 3x10(-5) and a sensitivity for U-238 of up to 4x10(9) counts s(-1) ppm(-1) was achieved. The limit of quantification (LOQ, 10s) for U-236 and Pu-239 using the experimental arrangement described above was 0.6 pg l(-1) in aqueous solution and 0.13 pg g(-1) in soil, respectively. ICP-SFMS was used in comparison to alpha spectrometry to measure the U and Pu concentrations and isotopic compositions in two soil samples and in one penetrator collected in Kosovo. ICP-MS permitted the determination of U and Pu isotope ratios including the U-236 abundance and Pu-240/Pu-239 ratio at ultratrace levels in soil samples of up to 0.1 g. Depleted uranium (U-235/U-238= 0.00202 +/-0.00001) was determined in one penetrator and one soil sample. Pu concentrations of (5.5 +/-0.1) x 10(-13) g g(-1) and (4.4 +/-0.5) x 10(-13) g g(-1) (Pu-240/Pu-239=0.35 +/-0.10 and 0.27 +/-0.07, respectively) were found in both soil samples from Kosovo. Besides plutonium, U-236 (3.1x10(-5) g g(-1)) and Am-241 (1.7x10(-12) g g(-1)) were also detected in the penetrator sample, which indicates the previous existence of neutron-related processes and points to a possible presence of spent reactor uranium in munitions. However, the most probable plutonium contamination sources in analyzed soil samples from Kosovo are mixed fallout including spent reactor fuel due to the Chernobyl nuclear power plant accident in 1986 and plutonium due to nuclear weapon tests. Additional plutonium contamination could not be determined in the Kosovo soil sample containing depleted uranium with a detection limit of about 10(-13) g g(-1)

    Evidence of vacuum birefringence from the polarisation of the optical emission from an Isolated Neutron Star

    Full text link
    Isolated Neutron Stars are some of the most exciting stellar objects known to astronomers: they have the most extreme magnetic fields, with values up to 101510^{15} G, and, with the exception of stellar-mass black holes, they are the most dense stars, with densities of 1014\approx 10^{14} g cm3^{-3}. As such, they are perfect laboratories to test theories of electromagnetism and nuclear physics under conditions of magnetic field and density unattainable on Earth. In particular, the interaction of radiation with strong magnetic fields is the cause of the {\em vacuum birefringence}, an effect predicted by quantum electrodynamics in 1936 but that lacked an observational evidence until now. Here, we show how the study of the polarisation of the optical radiation from the surface of an isolated neutron star yielded such an observational evidence, opening exciting perspectives for similar studies at other wavelengths.Comment: 5 pages, 1 figure, Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    TCR remote monitoring for the LHC technical infrastructure

    Get PDF
    The remote monitoring of the LHC technical infrastructure will mainly be done in CERN’s Technical Control Room (TCR). The technical infrastrucure consists of specialised equipment from different groups and divisions, mainly cooling and ventilation and electrical equipment. The responsibility for the definition, operation and maintenance of the equipment is covered by the relevant equipment group. However the monitoring and alerting for action in case of equipment failure is initiated by the TCR and is based on alarms that are sent by the equipment. This implies the correct integration of the equipment and the establishment of rules to follow during the commissioning and start-up of the equipment in order to ensure proper operation. This paper shows the integration possibilities and the different tasks and steps to follow by the different parties for smooth equipment integration and avoiding organizational problems

    Towards an integrated clinical framework for patient with shoulder pain

    Get PDF
    Background: Shoulder pain (SP) represents a common musculoskeletal condition that requires physical therapy care. Along the years, the usual evaluation strategies based on clinical tests and diagnostic imaging has been challenged. Clinical tests appear unable to clearly identify the structures that generated pain and interpretation of diagnostic imaging is still controversial. The current patho-anatomical diagnostic categories have demonstrated poor reliability and seem inadequate for the SP treatment. Objectives: The present paper aims to (1) describe the different proposals of clinical approach to SP currently available in the literature; to (2) integrate these proposals in a single framework in order to help the management of SP. Conclusion: The proposed clinical framework, based on a bio-psychosocial vision of health, integrates symptoms characteristics, pain mechanisms and expectations, preferences and psychosocial factors of patients that may guide physiotherapist to make a diagnostic triage and to choose the right treatment for the individual patient

    Deep R-band counts of z~3 Lyman break galaxy candidates with the LBT

    Full text link
    Aims. We present a deep multiwavelength imaging survey (UGR) in 3 different fields, Q0933, Q1623, and COSMOS, for a total area of ~1500arcmin^2. The data were obtained with the Large Binocular Camera on the Large Binocular Telescope. Methods. To select our Lyman break galaxy (LBG) candidates, we adopted the well established and widely used color-selection criterion (U-G vs. G-R). One of the main advantages of our survey is that it has a wider dynamic color range for U-dropout selection than in previous studies. This allows us to fully exploit the depth of our R-band images, obtaining a robust sample with few interlopers. In addition, for 2 of our fields we have spectroscopic redshift information that is needed to better estimate the completeness of our sample and interloper fraction. Results. Our limiting magnitudes reach 27.0(AB) in the R band (5\sigma) and 28.6(AB) in the U band (1\sigma). This dataset was used to derive LBG candidates at z~3. We obtained a catalog with a total of 12264 sources down to the 50% completeness magnitude limit in the R band for each field. We find a surface density of ~3 LBG candidates arcmin^2 down to R=25.5, where completeness is >=95% for all 3 fields. This number is higher than the original studies, but consistent with more recent samples.Comment: in press by A&A, full LBG candidates' catalog will be available in electronic form at the CD

    FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Get PDF
    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV (120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph, but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of time scales, over all wavelengths, during the week-long main campaign, including a large X-ray flare; "super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV 139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm (10,000-30,000 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences, and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.Comment: to be published in ApJ
    corecore