32 research outputs found

    Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?

    Get PDF
    Nanobubbles at solid-liquid interfaces play a key role in various physicochemical phenomena and it is crucial to understand their unique properties. However, little is known about their interfacial tensions due to the lack of reliable calculation methods. Based on mechanical and thermodynamic insights, we quantified for the first time the liquid-gas, solid-liquid, and solid-gas interfacial tensions of submicron-sized nitrogen bubbles at graphite-water interfaces using molecular dynamics (MD) analysis. It was revealed that Young's equation holds even for nanobubbles with different radii. We found that the liquid-gas and solid-liquid interfacial tensions were not largely affected by the gas density inside the nanobubbles. In contrast, the size effect on the solid-gas interfacial tension was observed, namely, the value dramatically decreased upon an increase in the gas density due to gas adsorption on the solid surface. However, our quantitative evaluation also revealed that the gas density effect on the contact angles is negligible when the footprint radius is larger than 50 nm, which is a typical range observed in experiments, and thus the flat shape and stabilization of submicron-sized surface bubbles observed in experiments cannot be explained only by the changes in interfacial tensions due to the van der Waals interaction-induced gas adsorption, namely by Young's equation without introducing the pinning effect. Based on our analysis, it was clarified that additional factors such as the differences in the studied systems are needed to explain the unresolved open issues-a satisfactory explanation for the nanobubbles in MD simulations being ultradense, non-flat, and stable without pinning.Teshima H., Kusudo H., Bistafa C., et al. Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?. Nanoscale 14, 2446 (2022); https://doi.org/10.1039/d1nr07428h

    Prototyping Hexagonal Light Concentrators Using High-Reflectance Specular Films for the Large-Sized Telescopes of the Cherenkov Telescope Array

    Full text link
    We have developed a prototype hexagonal light concentrator for the Large-Sized Telescopes of the Cherenkov Telescope Array. To maximize the photodetection efficiency of the focal-plane camera pixels for atmospheric Cherenkov photons and to lower the energy threshold, a specular film with a very high reflectance of 92-99% has been developed to cover the inner surfaces of the light concentrators. The prototype has a relative anode sensitivity (which can be roughly regarded as collection efficiency) of about 95 to 105% at the most important angles of incidence. The design, simulation, production procedure, and performance measurements of the light-concentrator prototype are reported.Comment: 21 pages, 14 figures, accepted for publication in JINS

    Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger is generated in a mezzanine on the board, the waveform stored in the capacitor array is subsequently digitized with a low speed (33 MHz) ADC and transferred via the FPGA-based Gigabit Ethernet to a data acquisition system. Both a low power consumption (2.64 W per channel) and high speed sampling with a bandwidth of >>300 MHz have been achieved. In addition, in order to increase the dynamic range of the readout we adopted a two gain system achieving from 0.2 up to 2000 photoelectrons in total. We finalized the board design for the first LST and proceeded to mass production. Performance of produced boards are being checked with a series of quality control (QC) tests. We report the readout board specifications and QC results.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The creation of a coherent genomic map of recent selection is one of the greatest challenges towards a better understanding of human evolution and the identification of functional genetic variants. Several methods have been proposed to detect linkage disequilibrium (LD), which is indicative of natural selection, from genome-wide profiles of common genetic variations but are designed for large regions.</p> <p>Results</p> <p>To find population-specific LD within small regions, we have devised an entropy-based method that utilizes differences in haplotype frequency between populations. The method has the advantages of incorporating multilocus association, conciliation with low allele frequencies, and independence from allele polarity, which are ideal for short haplotype analysis. The comparison of HapMap SNPs data from African and Caucasian populations with a median resolution size of ~23 kb gave us novel candidates as well as known selection targets. Enrichment analysis for the yielded genes showed associations with diverse diseases such as cardiovascular, immunological, neurological, and skeletal and muscular diseases. A possible scenario for a selective force is discussed. In addition, we have developed a web interface (ENIGMA, available at <url>http://gibk21.bse.kyutech.ac.jp/ENIGMA/index.html</url>), which allows researchers to query their regions of interest for population-specific LD.</p> <p>Conclusion</p> <p>The haplotype entropy method is powerful for detecting population-specific LD embedded in short regions and should contribute to further studies aiming to decipher the evolutionary histories of modern humans.</p

    Joint Observation of the Galactic Center with MAGIC and CTA-LST-1

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
    corecore