285 research outputs found

    Another derivation of the geometrical KPZ relations

    Full text link
    We give a physicist's derivation of the geometrical (in the spirit of Duplantier-Sheffield) KPZ relations, via heat kernel methods. It gives a covariant way to define neighborhoods of fractals in 2d quantum gravity, and shows that these relations are in the realm of conformal field theory

    On the fundamental representation of Borcherds algebras with one imaginary simple root

    Full text link
    Borcherds algebras represent a new class of Lie algebras which have almost all the properties that ordinary Kac-Moody algebras have, and the only major difference is that these generalized Kac-Moody algebras are allowed to have imaginary simple roots. The simplest nontrivial examples one can think of are those where one adds ``by hand'' one imaginary simple root to an ordinary Kac-Moody algebra. We study the fundamental representation of this class of examples and prove that an irreducible module is given by the full tensor algebra over some integrable highest weight module of the underlying Kac-Moody algebra. We also comment on possible realizations of these Lie algebras in physics as symmetry algebras in quantum field theory.Comment: 8 page

    Liouville D-branes in Two-Dimensional Strings and Open String Field Theory

    Get PDF
    We study open strings in the noncritical c=1c=1 bosonic string theory compactified on a circle at self-dual radius. These strings live on D-branes that are extended along the Liouville direction ({\it FZZT} branes). We present explicit expressions for the disc two- and three-point functions of boundary operators in this theory, as well as the bulk-boundary two-point function. The expressions obtained are divergent because of resonant behaviour at self-dual radius. However, these can be regularised and renormalized in a precise way to get finite results. The boundary correlators are found to depend only on the differences of boundary cosmological constants, suggesting a fermionic behaviour. We initiate a study of the open-string field theory localised to the physical states, which leads to an interesting matrix model.Comment: 29 pages, harvma

    Thermal Correlators in Little String Theory

    Get PDF
    We calculate, using holographic duality, the thermal two-point function in finite temperature little string theory. The analysis of those correlators reveals possible instabilities of the thermal ensemble, as in previous discussions of the thermodynamics of little string theory. We comment on the dependence of the instability on the spatial volume of the system.Comment: 13 page

    Quantum geometry of 3-dimensional lattices

    Full text link
    We study geometric consistency relations between angles on 3-dimensional (3D) circular quadrilateral lattices -- lattices whose faces are planar quadrilaterals inscribable into a circle. We show that these relations generate canonical transformations of a remarkable ``ultra-local'' Poisson bracket algebra defined on discrete 2D surfaces consisting of circular quadrilaterals. Quantization of this structure leads to new solutions of the tetrahedron equation (the 3D analog of the Yang-Baxter equation). These solutions generate an infinite number of non-trivial solutions of the Yang-Baxter equation and also define integrable 3D models of statistical mechanics and quantum field theory. The latter can be thought of as describing quantum fluctuations of lattice geometry. The classical geometry of the 3D circular lattices arises as a stationary configuration giving the leading contribution to the partition function in the quasi-classical limit.Comment: 27 pages, 10 figures. Minor corrections, references adde

    On Holomorphic Factorization in Asymptotically AdS 3D Gravity

    Full text link
    This paper studies aspects of ``holography'' for Euclidean signature pure gravity on asymptotically AdS 3-manifolds. This theory can be described as SL(2,C) CS theory. However, not all configurations of CS theory correspond to asymptotically AdS 3-manifolds. We show that configurations that do have the metric interpretation are parameterized by the so-called projective structures on the boundary. The corresponding asymptotic phase space is shown to be the cotangent bundle over the Schottky space of the boundary. This singles out a ``gravitational'' sector of the SL(2,C) CS theory. It is over this sector that the path integral has to be taken to obtain the gravity partition function. We sketch an argument for holomorphic factorization of this partition function.Comment: 32+1 pages, no figures; (v2) one reference added, a statement regarding priorities modified; (v3) presentational changes, an important sign mistake correcte

    String Theory and Water Waves

    Full text link
    We uncover a remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain {hat c}<1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.Comment: 49 pages, 4 figure

    A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model

    Full text link
    We argue that topological matrix models (matrix models of the Kontsevich type) are examples of exact open/closed duality. The duality works at finite N and for generic `t Hooft couplings. We consider in detail the paradigm of the Kontsevich model for two-dimensional topological gravity. We demonstrate that the Kontsevich model arises by topological localization of cubic open string field theory on N stable branes. Our analysis is based on standard worldsheet methods in the context of non-critical bosonic string theory. The stable branes have Neumann (FZZT) boundary conditions in the Liouville direction. Several generalizations are possible.Comment: v2: References added; a new section with generalization to non-zero bulk cosmological constant; expanded discussion on topological localization; added some comment
    corecore