2,169 research outputs found

    Situation determination with reusable situation specifications

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. In both cases, the situations are tailored to the specific environment, and are therefore not transferable to other environments. Furthermore, situations are recognised at a low-level of granularity, which limits the scope of situation-aware applications. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specications that can be easily extended to create new speficic situations, and immediately deployed without the need of an environment expert. A proposed architecture of an accompanying situation determination middleware is provided, as well as an analysis of a prototype implementation

    A model and architecture for situation determination

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. Furthermore, situations are commonly recognised at a low-level of granularity, which limits the scope of situation-aware applications. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specifications that can be easily extended to create new specific situations, and immediately deployed without the need of an environment expert. A proposed architecture of an accompanying situation determination middleware is provided, as well as an analysis of a prototype implementation

    Towards ad-hoc situation determination

    Get PDF
    Toolkits such as PlaceLab [1] have been successful in making location information freely available for use in experimental ubiquitous computing applications. As users' expectations of ubiquitous computing applications grow, we envisage a need for tools that can deliver a much richer set of contextual information. The high-level situation of the current environment is a key contextual element, and this position paper focuses on a method to provide this information for an ad-hoc group of people and devices. The contributions of this paper are i) a demonstration of how information retrieval (IR) techniques can be applied to situation determination in context-aware systems, ii) a proposal of a novel approach to situation determination that combines these adapted IR techniques with a process of cooperative interaction, and iii) a report of preliminary results. The approach offers a high level of utility and accuracy, with a greater level of automation than other contemporary approaches

    Towards dynamic context discovery and composition

    Get PDF
    Context-awareness has been identified as a key characteristic for pervasive computing systems. As a variety of context-aware environments begin to flourish, pervasive applications shall have to interact different environments well. In this paper we propose extensions to the Strathclyde Context Infrastructure that gives context-aware applications the potential to adapt to unfamiliar environments transparently. We present a vision of a context discovery technique based on automated semantic reasoning about context information and services. The technique will offer higher levels of scalability and of interoperability with new context environments that cannot be achieved with current methods

    Situation determination with distributed context histories

    Get PDF
    Determining the situation within an environment is a key goal of smart environment research. A significant challenge in situation determination is reasoning about openended groups of people and devices that a smart environment may contain. Contemporary solutions are often tailored to the specific environment. In this position paper, we present a novel general situation determination framework, that by viewing people and tools as playing roles in a situation, can easily adapt recognition to incorporate the dynamic structure of a situation over time
    corecore