
Strathprints Institutional Repository

Thomson, G. and Nixon, P. and Terzis, S. (2005) Situation determination with distributed context
histories. In: Proceedings of 1st International Workshop on Exploiting Context Histories in Smart
Environments. IEEE, Munich, Germany.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
 
Thomson, G. and Nixon, P. and Terzis, S. (2005) Situation determination 
with distributed context histories. In: Proceedings of 1st International 
Workshop on Exploiting Context Histories in Smart Environments. 
IEEE Computer Society, Munich, Germany.
 
 
 
http://eprints.cdlr.strath.ac.uk/2734/
 
 
 
This is an author-produced version of a paper published in Proceedings 
of 1st International Workshop on Exploiting Context Histories in Smart 
Environments.This version has been peer-reviewed, but does not include the 
final publisher proof corrections, published layout, or pagination. 
 
Strathprints is designed to allow users to access the research 
output of the University of Strathclyde. Copyright © and Moral 
Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download 
and/or print one copy of any article(s) in Strathprints to facilitate 
their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any 
profitmaking activities or any commercial gain. You may freely 
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints 
website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/2815/


Situation Determination with Distributed Context Histories

Graham Thomson, Paddy Nixon, and Sotirios Terzis
Global and Pervasive Computing Group, Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK

ABSTRACT
Determining the situation within an environment is a key
goal of smart environment research. A significant chal-
lenge in situation determination is reasoning about open-
ended groups of people and devices that a smart environment
may contain. Contemporary solutions are often tailored to
the specific environment. In this position paper, we present
a novel general situation determination framework, that by
viewing people and tools as playing roles in a situation, can
easily adapt recognition to incorporate the dynamic structure
of a situation over time.

INTRODUCTION
Determining the situation within an environment is a key
goal of smart environment research. It provides a natu-
ral pivot to which users and application programmers can
associate behaviours, such that the computing machinery
contained within the environment silently and automatically
adapts to its inhabitants’ behaviours, “invisibly enhancing
the world” [1].

The approaches to situation determination offered by the
state-of-the-art context-aware infrastructures [2, 3] experi-
ence the following drawbacks:

• An expert of the particular environment is required to
specify the correlation of the available context informa-
tion with the situations that occur. Reasoning is performed
by large logic programs [3] or Bayesian networks [2],
which must be manually constructed and maintained.

• As the amount of available context information and num-
ber of situations increases, it becomes increasingly diffi-
cult for an expert to decipher and specify correlations.

• The situation specifications will suffer from the subjective
bias of the expert who programmed them.

• Recognition is limited to the fixed number of cases pro-
grammed by the expert for the local environment, and
does not adapt well to the introduction of unrecognised

people or devices in the environment, that is, when the
structure of the situation is uncertain.

This paper presents a novel approach to situation determina-
tion that attempts to address these issues. There is no need of
an environment expert, as situations are programmed by ex-
ample by users themselves. Reasoning is based upon a gen-
eral situation determination framework that can be applied
in any smart environment. By viewing people and tools as
playing roles in a situation, recognition can easily adapt to
incorporate the dynamic structure of a situation over time.

To illustrate the kind of situations we wish to detect, listed
below are examples of typical situations that occur within
our department, along with a description of their character-
istics.

Project meeting People that are members of a project are
assembled in a meeting room.

PhD meeting A PhD student and their supervisor are talk-
ing in the supervisor’s office.

Conversation Two or more people are talking in the same
area.

Presentation An audience is assembled in a meeting room,
a projector is running, and presentation software is run-
ning. The host introduces the speaker(s), the speaker(s)
present, and then the speaker(s) answer questions posed
by the audience.

Checking mail A person is working with mail reader, web
browser, and document reader tools, with the mail reader
tool being used most frequently.

Reading A person is alone at their desk, and the computer
or any other tools in the desk area are idle.

Coffee break The time is around either 11 or 4 o’clock, and
a group of people are assembled in the staff room, drink-
ing coffee.

Party In the late afternoon or evening, a large group of peo-
ple are gathered in a conference room, with music playing
and a projector displaying photographs.

From considering the situations presented above in addition
to other situations from domestic and social scenarios, we
propose that a situation can be robustly characterised by the
combination of four main aspects:

1



Situation

Time Location People Tools

Figure 1. The situation tree.

L10.01d

Meeting room

is a

SmartLab

is within

Location

H S

Research Laboratory

is a

CIS

is within

Comp Sci Dept

is a

Figure 2. The Location subtree.

• The time at which the situation occurs, as well as its dura-
tion.

• Where the situation occurs, and the properties of that lo-
cation.

• The attributes of the group of people that are present.

• The group of tools that are present, and the manner in
which they are being used.

Furthermore, we propose that to accurately identify the ele-
ments of a situation that change over time, analysis of only
the order and proportion of those elements is sufficient.

In the rest of this paper, we go on to describe the chal-
lenges faced when attempting to determine the situation, and
present how we deal with these challenges in our approach
to situation determination.

REPRESENTING THE SITUATION
An ontology based approach is used to represent the in-
formation that characterises a situation. Doing so permits
matching at various levels of abstraction, information to be
exchanged and interpreted correctly between multiple par-
ticipants, and the information to be translated to different
ontologies that may be used in other environments.

Figures 1 through 6 shows an example ontology describing
a small presentation situation. The ontology is structured as
a tree. At the root of the tree in Fig. 1, is the Situation class,
which contains four other classes - Time, Location, People,
and Tools.

People

Number of people H S p0 p1

H S

Figure 3. The People subtree.

Tools

t0 t1

Tool Tool

Application

is a

Projector

is a

Presentation App

is a

Name Title Bar Active Window %CPU Name Status

Power Point H S H S H S Sony VPL-CX70 H S

Figure 4. The Tools subtree.

Person

Name ID Groups Occupations

Ian ID032

p0

g0 g1

Group Group

Name Name

SmartLab EFoCS

o0 o1

Occupation Occupation

Researcher

is a

Lecturer

is a

Classes

c0 c1

Class Class

Name Name

Graphics Computer Forensics

Figure 5. Thep0 subtree.

p1

Person

Name ID Groups Occupations

Alex ID047 g0

Group

Name

SmartLab

o0

Occupation

PhD

is a

Supervisor

ID032

Figure 6. Thep1 subtree.

2



Time is the simplest aspect in the tree and includes values
such as the time of day, day of week, date of month, etc. The
tree is not shown in the interests of space.

To represent location, a symbolic, hierarchical model is
used. That is, locations are referred to by name, and may be
spatially contained in other locations. For example, Fig. 2
shows that ‘SmartLab’ is contained in ‘CIS’. Each location
is associated with a class that represents the type of location
it is. For example, the location ‘SmartLab’ is a Research
Laboratory.

As there may be a group of people present in a particular sit-
uation, each person is given a label, shown asp0 andp1 in
Figs. 3, 5, and 6. These labels are utilised in matching, as we
shall see later. From each person instance stems useful in-
formation that will help to identify a situation, such as their
occupation, the groups they belong, and so on. For some
situations such as a conversation, it is simply the number of
people present, not their individual identities that are char-
acteristic. A Number of People class is included to capture
this explicitly.

Each tool that is involved with a situation is also given a
label, shown ast0 andt1 in Fig. 4. Tools can include phys-
ical devices such as projector or a whiteboard, as well as
computer applications. Computer devices are not regarded
as tools themselves, as their use is characterised by the soft-
ware applications that they host.

For each class in the ontology, its variables shall be either
static or dynamic. If a variable is static, it is the value of the
variable that characterises a situation. For example, in Fig. 5,
‘Ian’ is the value of the static variable ‘Name’. If a variable
is dynamic, it is the change in its value that characterises a
situation. For example, in Fig. 4, the variable ‘%CPU’ is
dynamic. To capture the change in value, the sequence and
histogram of values is stored for a dynamic variable. A se-
quence captures the order of the values, a histogram captures
the proportion of the values. In the figures, dynamic vari-
ables can be identified by their Sequence (S) and Histogram
(H) siblings.

Recent work has shown success in using dynamic Bayesian
networks to classify low-level actions or activities of users,
such as holding a telephone handset, or adjusting a thermo-
stat [4, 5]. However, applying such techniques to recognis-
ing a situation, where the number of variables is very large
and may change continuously (the structure is dynamic), and
the situation’s duration may be an hour or more, would be
impractical. We suggest that such techniques are ideal for
generating values of variables in the situation tree. For ex-
ample, our current implementation uses a hidden Markov
model to infer the current location.

SITUATION DETERMINATION
In our approach, situations are captured by the users them-
selves. We envisage a user running a client that requests a
label for the situation, as well as the start and end times. Dur-
ing this period, the situation tree for the current environment

(the context history) is recorded. Currently, we define the
environment to be the room the user is in.

When determining the situation, we are comparing a situ-
ation tree that reflects the current state of the environment
to a situation tree that has been previously captured and la-
belled. We shall refer to these as an example situation and
the current situation respectively.

For each class defined in the ontology, there exists a compar-
ison function that returns the similarity of two instances of
that class. In this way, the similarity instances can be given
the most appropriate score according to their class. For ex-
ample, as the string ‘Alex’ is an instance of the class Name, it
would have a greater similarity when compared to ‘Alexan-
der’ than to ‘Alan’.

It is the open-ended number of entities that makes situation
determination challenging, specifically matching groups of
entities. When a situation contains an open-ended group of
objects, its structure is dynamic. As a situation is strongly
characterised by the groups of people and tools it contains,
an efficient method to compare groups is required. Con-
sider the presentation application tool that is part of the Tools
group in Figure 1. It is PowerPoint, and let’s assume its dy-
namic properties show it is running lightly continuously. In
an example situation it may be OpenOffice Impress that is
running lightly continuously. What we are interested in is
finding the tool that is playing therole of a presentation ap-
plication running lightly continuously. Similarly in a PhD
meeting situation, within the group of people present a per-
son plays the role of a supervisor, while another plays the
role of a student. Any group can be viewed as a set of
roles. The problem of matching a group is then finding
which members of a group from the current situation best
fit the roles defined by the group in an example situation.

In Figs. 3, 5, and 6 the two instances of Person are labelled
p0 and p1. These labels identify the role that that person
plays. To compare a group, we have to use a more sophis-
ticated compare function than that described previously. To
illustrate, we shall consider the case of matching two Peo-
ple groups. Let ex.P be the People group from an example,
and c.P be the People group from the current situation. The
algorithm for matching groups is then:

1. For eachepi in ex.P andcpj in c.P , compute the similar-
ity of epi andcpj , sim(epi, cpj).

2. Construct all possible mappings from the elements ofc.P
to ex.P where either every element ofex.P is mapped to
by a single, distinct element fromc.P , or every element
of c.P maps to a single, distinct element inex.P .

3. Calculate the score for each mapping by taking the aver-
age of thesim(epi, cpj) scores of each map within it.

4. The mapping which has the highest score gives the score
for the group as a whole, as well as the optimal mapping
of roles.

3



When comparing large groups, step 2 may become pro-
hibitive. In cases where each member of a group contains
only static properties, the computational cost can be reduced.
To achieve this, each group member is given a unique id.
When two group members are compared, their unique ids
are compared first. If the unique ids match, we can shortcut
the rest of the comparison of the two members as we know
we have an exact match.

Members identified by their unique id can be confidently as-
signed to a particular role. Then, it is only the group mem-
bers whose unique id is not recognised that must be assigned,
substantially reducing the number of mappings that must be
constructed.

Matching ‘in vivo’
When an example situation is captured, the information in
the situation tree is recorded over a length of time. When
situation matching is performed, it must be doneas the situ-
ation is unfolding. If only a single situation tree were used to
capture an entire situation, we could only accurately match
it at the end of the situation. Therefore, situation trees are
captured periodically throughout the duration of a situation.
The sequences and histograms of dynamic variables store
the changes in value of the variable from the beginning of
the situation up to the end of the period.

Distributed matching of situation fragments
So far we have looked at the situation tree as a whole. The
information contained within the tree shall come from sev-
eral different sources. It is therefore undesirable, and un-
necessary, to have to collate the information in one place to
perform matching.

In our approach, each person and tool has a corresponding
software agent. The agent observes the information in, and
performs matching on, the fragment of the situation tree that
represents the person or tool. No single agent has a view of
the entire situation tree, it can only see its own fragment. For
example, in Fig. 5, the agent representing Person ‘Ian’ would
see only the subtree starting atp0, and in Fig. 4 the agent
representing the Power Point instance, would see only the
subtree starting att0. There is also an agent that represents
the current environment, which we refer to as the situation
server (SS).

When a tool or person enters a new location, its agent alerts
the SS for that location to its representative’s presence. The
communication links between the SS and each agent in the
environment form a star topology. Each agent stores locally
applicable fragments of example situations. The agent com-
pares the current situation fragment to each example frag-
ment, making a list of all (fragment label, score) pairs. This
list is then sent to the SS.

When the SS has received a list from each agent, it must
combine these fragment scores into a score for that situation
tree as a whole. The list from a Person agent will include the
score of the agent’s representative against each Person role
in a situation, likewise for a list from a Tool agent. Based on

these lists, the SS executes the group score / role assignment
algorithm for the People and Tools groups. The SS then
computes the scores for Location and Time and combines
these to produce the total scores for each situation. The SS
then sends a message back to each agent in the environment,
indicating the highest scoring situation.

FUTURE WORK
In this paper it has been assumed that people in the same lo-
cation are in the same situation. This will not always be the
case. For example, in an open plan work area, some peo-
ple may be involved in a conversation, while others may be
working at their desk. Recognition could be extended to dif-
ferentiate between these. Furthermore, some situations such
as ‘Journey home’ will be characterised by a sequence of
locations. In this case it may be inappropriate for a Person
agent to attempt collaborative determination at each loca-
tion.

As the number of situation examples increases, each agent
will have a greater number of fragments to match. After
an example situation is captured, a clustering phase could be
introduced to reduce the total number of situation fragments.

In some situations, such as outdoor situations, it may not be
possible to host a dedicated SS. In such cases, the agents
involved in a situation would participate in an election pro-
tocol to identity the most suitable agent to act as the SS.

We are currently experimenting with our approach on simu-
lated data, for which the initial results look promising. We
are also evaluating different approaches to combining exam-
ples of the same situation, as well as opportunities for un-
supervised learning. We are also working on the develop-
ment of the necessary matching agents, which will provide
a prototype system allowing us to experiment with real-time
situation determination.

REFERENCES
1. M. Weiser. The computer for the 21st century.Scientific

American, pages 94–104, September 1991.

2. A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell.
Reasoning about uncertain contexts in pervasive
computing environments.IEEE Pervasive Computing,
3(2):62–70, 2004.

3. H. Chen, T. Finin, and A. Joshi. A context broker for
building smart meeting rooms. InProceedings of the
Knowledge Representation and Ontology for
Autonomous Systems Symposium, 2004 AAAI Spring
Symposium. AAAI, March 2004.

4. Matthai Philipose, Kenneth P. Fishkin, Mike Perkowitz,
Donald J Patterson Dirk Hahnel, Dieter Fox, and Henry
Kautz. Inferring Activities from Interactions with
Objects. InIEEE Pervasive Computing: Mobile and
Ubiquitous Systems, volume 3, pages 50–57. IEEE,
2004.

5. Kenneth P. Fishkin, Bing Jiang, Matthai Philipose, and
Sumit Roy. I sense a disturbance in the force:

4



Unobtrusive detection of interactions with rfid-tagged
objects. InUbicomp, pages 268–282, 2004.

Author Biographies

Graham Thomson is a PhD student in the Department of
Computer and Information Sciences at the University of
Strathclyde. He received his BSc in Software Engineering
from the University of Strathclyde. Contact him at the Univ.
of Strathclyde, Dept. of Computer and Information Science,
Livingstone Tower, 26, Richmond Street, G1 1XH Glasgow,
Scotland; Graham.Thomson@cis.strath.ac.uk.

Sotirios Terzis is a lecturer in the Department of Computer
and Information Sciences at the University of Strathclyde.
He received his PhD in the Computer Science Department
at Trinity College Dublin. His research interests include
context-awareness and trust management in pervasive com-
puting systems. He received his BSc and MSc with a special-
ization in distributed systems from the University of Crete.
He is a member of the ACM, the IEEE Computer Society,
and the British Computer Society. Contact him at the Univ.
of Strathclyde, Dept. of Computer and Information Science,
Livingstone Tower, 26, Richmond Street, G1 1XH Glasgow,
Scotland; Sotirios.Terzis@cis.strath.ac.uk.

Paddy Nixon is professor of computer science at the Univer-
sity of Strathclyde where he leads the Global and Pervasive
Computing Group. He received his BS and PhD in computer
science from Liverpool University and his MA from Trinity
College Dublin. Contact him at the Univ. of Strathclyde,
Dept. of Computer and Information Science, Livingstone
Tower, 26, Richmond Street, G1 1XH Glasgow, Scotland;
paddy@cis.strath.ac.uk.

5


