182 research outputs found

    A graph theory based new approach for power system restoration

    Get PDF

    Transmission network angle stability protection based on synchrophasor data in control centre

    Get PDF
    Angle stability appears in many forms in transmission network. There are small active power oscillations which do not endanger the normal operations whereas medium and large oscillations have implications on normal operations. These latter kinds of oscillations in some cases develop in out of step condition, which is dangerous disturbance with serious impact on transmission network and generating units. Transmission network operator’s challenges and obligations are to treat in the right manner angle stability issues in their network. Controlling and protecting network needs to be done in efficient way in order to disconnect disturbance quickly and prevent abnormal network operation without exporting disturbance in surrounding networks. Synchrophasor measurements in control centre offer a platform, which responds in a new way on angle stability in transmission network. Those measurements which are collected in phasor data concentrators, which is a part of Wide Area Monitoring will be used for creating out of step protection. This is the first step to extended system to Wide Area Monitoring Protecting And Control (WAMPAC). Paper gives progress of such project in Croatian Transmission Network Operator (HOPS). Firstly, there will be stated motives for development of new out of step protection based on synchrophasor measurements. Some feasibility aspect elaborated with emphasis on communications latency. Furthermore, designed Matlab model for transmission network and protection with small portions of simulations results and analyses presented in paper reveal potential of proposed solutions. This new protection is based on using voltage angles values from phasor data stream in phasor data concentrator

    Integration of wind and solar energies with battery energy storage systems into 36-zone Great Britain power system for frequency regulation studies

    Get PDF
    Variable-speed wind generators (VSWGs) and solar Photovoltaic (PV) units are being broadly employed as the main renewable energy sources in large-scale transmission power networks. However, they can cause system stability challenges following power imbalances since they provide no inertial and governor responses. In this study, generic dynamic models are developed for VSWGs, PVs and battery energy storages systems (BESSs) which include inertia emulator and droop-based frequency control schemes. These models are suitable for transmission systems stability studies and are integrated into 36-zone Great Britain (GB) power system in DIgSILENT PowerFactory. It is a very useful benchmark for academic research and industrial sectors to undertake feasibility studies for renewable energy integration into GB power system. However, it is not an exact equivalent of the real GB power system. The dynamic time-domain simulations and modal analysis are provided and justified to investigate how PV, Wind and BESS units affect the system frequency response. A sensitivity analysis is also carried out against several factors to demonstrate the dynamic performance of the test system incorporating the generic models for VSWGs, PVs and BESSs. These are associated with units’ frequency response and system frequency changes under renewable energies’ penetration levels of 20 %, 25 %, 50 %, 60 % and 75 % of system demand.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Development of the equivalent Great Britain 36-zone power system for frequency control studies

    Get PDF
    This paper presents a dynamic model of the equivalent Great Britain (GB) 36-zone power system, which can be used for reliable and realistic assessment of emerging load frequency control mechanisms. Flexible architecture of the presented dynamic test system permits a broad range of security of supply and small-signal stability studies for design of future power grids. It can be particularly useful for academic research, but also for undertaking feasibility studies in power industries. The proposed dynamic test system, which is obtained through network reduction of the original full-scale GB transmission power system developed by National Grid Electricity System Operator (NGESO) Company, provides detailed information about the GB power system. In this regard, the required data and modelling approaches to develop the 36-zone system are provided in detail. The presented dynamic test system represents the system topology, impedance characteristics and electromechanical oscillations of the original GB power system however, it is not an exact equivalent of the master GB system. Illustrative dynamic models of the key system components, including synchronous generators, automatic voltage regulators, power system stabilizers, hydro and steam turbines models along with speed governing systems are presented. Dynamic behavior of 36-zone test system in response to infeed loss contingencies is investigated. Particularly, the impact of changes in the system inertia on the system electromechanical modes is examined using the modal analysis approach. In this context, the mode shape concept is employed to determine dominant generators and contribution of different zones in the low frequency oscillations. Moreover, time-domain simulations are undertaken to validate the modal analysis results. Additionally, the condition of different zones from the viewpoint of frequency nadir and maximum rate of change of frequency for various contingencies and extreme cases are examined.© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Intentional Controlled Islanding and Risk Assessment: A Unified Framework

    Get PDF
    Power systems are prone to cascading outages leading to large-area blackouts, and intentional controlled islanding (ICI) can mitigate these catastrophic events by splitting the system into sustainable islands. ICI schemes are used as the last resort to prevent cascading events; thus, it is critical to evaluate the corresponding system risks to ensure their correct operation. This paper proposes a unified framework to assess the risk of ICI schemes. First, a novel ICI method to create islands with minimum power imbalance is presented. Further, a risk assessment methodology is used to assess the probability and impact of the main operational modes of the ICI scheme. The unified framework provides insights on the benefits of implementing ICI, considering the uncertainties related to its reliability. The ICI scheme is demonstrated using the IEEE 9-bus system. The proposed unified framework is then fully deployed on the actual power system of Cyprus. Multiple case studies on the real network are created to demonstrate the adaptability and robustness of the proposed scheme to different system conditions. The adoption of the unified framework highlights that the system risk significantly reduces with the ICI in service, even when the reliability uncertainties associated with the scheme are considered.J. Quirós-Tortós, P. Demetriou, M. Panteli, E. Kyriakides and V. Terzija, "Intentional Controlled Islanding and Risk Assessment: A Unified Framework," IEEE Systems Journal., pp. 1-11, Oct. 2017. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Computation of internal voltage distribution in transformer windings by utilizing a voltage distribution factor

    Get PDF
    Abstract--In this paper, a method for the application of the black-box transformer models to the lumped-parameter transformer winding models is presented. The methodology is based on applying terminal transformer voltages as input parameters that could be provided by using the powerful black box vector fitting. Then, internal voltage distribution is determined by applying a lumped-parameter model approximation. In particular, the paper is focused on the direct computation of the internal voltage distribution, by avoiding a complicated procedure of solving the lumped-parameter winding model. The method is based on the transformation matrix utilization of the voltage distribution factors. This transformation matrix reflects the voltage distribution at specific internal points along the winding with respect to the input terminal voltages. At this stage, the inputs for the lumped-parameters model are provided by measured voltages at transformer terminals and the transformation matrix is determined through geometrical data of the transformer. The implementation of the proposed method with the black-box modeling approach in existing simulation software tools like EMTP is under development. The method is verified by comparing measured with computed waveforms
    • …
    corecore