5 research outputs found

    The variety mixture strategy assessed in a G × G experiment with rice and the blast fungus Magnaporthe oryzae

    Get PDF
    Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen's adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype × genotype (G × G) interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy. In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e., showing appropriate G × G interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of G × G interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 shows the opposite pattern. We also found that Maratelli's resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated. (RĂ©sumĂ© d'auteur

    VariabilitĂ© et dĂ©terminisme gĂ©nĂ©tique des traits de vie impliquĂ©s dans l’évolution de l’agressivitĂ© et l’adaptation Ă  la rĂ©sistance partielle

    No full text
    La recherche des traits impliquĂ©s dans la virulence et adaptatifs pour un hĂŽte ou son parasite, l’étude des compromis entre ces traits et des bases gĂ©nĂ©tiques de ces traits, sont cruciales pour la comprĂ©hension de l’évolution de la virulence. Dans les pathosystĂšmes cultivĂ©s, la virulence (classiquement dĂ©finie comme la baisse de fitness infligĂ©e Ă  l’hĂŽte par son parasite) est remplacĂ©e par la notion de pouvoir pathogĂšne dĂ©fini comme la quantitĂ© de dommages infligĂ©e Ă  l’hĂŽte. Une partie du pouvoir pathogĂšne dĂ©pend d’interactions spĂ©cifiques qualitatives de type gĂšne pour gĂšne prenant de facto en compte la variabilitĂ© des gĂ©notypes hĂŽtes et parasites. Par contre, trĂšs peu de travaux intĂ©grant les interactions gĂ©notype X gĂ©notype (G X G) ont portĂ© sur l’agressivitĂ©, composante qualitative du pouvoir pathogĂšne, qui correspond Ă  la rĂ©ponse du parasite aux rĂ©sistances partielles des hĂŽtes. Nous Ă©tudions l’adaptation du pathogĂšne fongique modĂšle Magnaporthe oryzae aux rĂ©sistances partielles du riz. Nous avons recherchĂ© des traits adaptatifs impliquĂ©s dans l’agressivitĂ© en prenant en compte les interactions G X G, Ă©tudiĂ© les corrĂ©lations entre traits, et recherchĂ© leurs bases gĂ©nĂ©tiques. Nous avons d’abord testĂ© 18 isolats de M. oryzae reprĂ©sentatifs de la diversitĂ© gĂ©nĂ©tique mondiale sur une variĂ©tĂ© de riz trĂšs sensible. Le nombre de lĂ©sions par feuille, la taille des lĂ©sions, le nombre de spores par unitĂ© de surface de lĂ©sion ont Ă©tĂ© mesurĂ©s. Les rĂ©sultats ont montrĂ© des diffĂ©rences significatives entre souches pour les 3 traits Ă©valuĂ©s. Ces donnĂ©es nous donnent accĂšs Ă  l’hĂ©ritabilitĂ© des caractĂšres mesurĂ©s. Nous avons ensuite testĂ© 4 des 18 isolats prĂ©cĂ©dents sur 4 variĂ©tĂ©s de riz de niveaux de rĂ©sistance variables et mesurĂ© les mĂȘmes caractĂšres. Nous avons dĂ©tectĂ© des variations significatives entre souches pour tous les facteurs mesurĂ©s, ainsi que des interactions G X G. Des essais prĂ©liminaires ont Ă©galement Ă©tĂ© rĂ©alisĂ©s sur la capacitĂ© de transmission Ă  des plantes saines. Enfin, un croisement sexuĂ© a Ă©tĂ© rĂ©alisĂ© entre les 2 souches ayant des positions extrĂȘmes dans les gammes de variation des traits. Deux cents descendants ont Ă©tĂ© gĂ©nĂ©rĂ©s, et gĂ©notypĂ©s avec 35 marqueurs microsatellites. Cette carte sera complĂ©tĂ©e par 300 marqueurs dĂ©veloppĂ©s Ă  partir des gĂ©nomes complets des 2 parents, qui seront acquis courant 2010. Cette densitĂ© devrait permettre de cartographier finement les QTL sous-tendant les traits impliquĂ©s dans l’adaptation aux rĂ©sistances partielles

    Evolution of compatibility range in the rice-magnaporthe oryzae system: an uneven distribution of R genes between rice subspecies

    No full text
    BGPI : Ă©quipe 2 / 5International audienceEfficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies
    corecore