103 research outputs found

    Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer

    Get PDF
    The increasing number of treatment options for patients with metastatic carcinomas has created a concomitant need for new methods to monitor their use. Ideally, these modalities would be noninvasive, be independent of treatment, and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells (CTCs) shed into the blood during metastasis may satisfy this need. We developed the CellSearch System to enumerate CTC from 7.5 mL of venous blood. In this review we compare the outcomes from three prospective multicenter studies investigating the use of CTC to monitor patients undergoing treatment for metastatic breast (MBC), colorectal (MCRC), or prostate cancer (MPC) and review the CTC definition used in these studies. Evaluation of CTC at anytime during the course of disease allows assessment of patient prognosis and is predictive of overall survival

    Significance of Circulating Tumor Cells Detected by the CellSearch System

    Get PDF
    The increasing number of treatment options for patients with metastatic carcinomas has created a concomitant need for new methods to monitor their use. Ideally, these modalities would be noninvasive, be independent of treatment, and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells (CTCs) shed into the blood during metastasis may satisfy this need. We developed the CellSearch System to enumerate CTC from 7.5 mL of venous blood. In this review we compare the outcomes from three prospective multicenter studies investigating the use of CTC to monitor patients undergoing treatment for metastatic breast (MBC), colorectal (MCRC), or prostate cancer (MPC) and review the CTC definition used in these studies. Evaluation of CTC at anytime during the course of disease allows assessment of patient prognosis and is predictive of overall survival

    Training an automated circulating tumor cell classifier when the true classification is uncertain

    Get PDF
    Circulating tumor cell (CTC) and tumor-derived extracellular vesicle (tdEV) loads are prognostic factors of survival in patients with carcinoma. The current method of CTC enumeration relies on operator review and, unfortunately, has moderate interoperator agreement (Fleiss’ kappa 0.60) due to difficulties in classifying CTC-like events. We compared operator review, ACCEPT automated image processing, and refined the output of a deep-learning algorithm to identify CTC and tdEV for the prediction of survival in patients with metastatic and nonmetastatic cancers. Operator review is only defined for CTC. Refinement was performed using automatic contrast maximization CM-CTC of events detected in cancer and in benign samples (CM-CTC). We used 418 samples from benign diseases, 6,293 from nonmetastatic breast, 2,408 from metastatic breast, and 698 from metastatic prostate cancer to train, test, optimize, and evaluate CTC and tdEV enumeration. For CTC identification, the CM-CTC performed best on metastatic/nonmetastatic breast cancer, respectively, with a hazard ratio (HR) for overall survival of 2.6/2.1 vs. 2.4/1.4 for operator CTC and 1.2/0.8 for ACCEPT-CTC. For tdEV identification, CM-tdEV performed best with an HR of 1.6/2.9 vs. 1.5/1.0 with ACCEPT-tdEV. In conclusion, contrast maximization is effective even though it does not utilize domain knowledge

    Identification of functional and diverse circulating cancer‐associated fibroblasts in metastatic castration‐naïve prostate cancer patients

    Get PDF
    In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) promote tumor progression, drug resistance, and metastasis. Although circulating tumor cells are studied as prognostic and diagnostic markers, little is known about other circulating cells and their association with PCa metastasis. Here, we explored the presence of circulating CAFs (cCAFs) in metastatic castration-naïve prostate cancer (mCNPC) patients. cCAFs were stained with fibroblast activation protein (FAP), epithelial cell adhesion molecule (EpCAM), and receptor-type tyrosine-protein phosphatase C (CD45), then FAP+EpCAM− cCAFs were enumerated and sorted using fluorescence-activated cell sorting. FAP+EpCAM− cCAFs ranged from 60 to 776 (389 mean ± 229 SD) per 2 × 108 mononuclear cells, whereas, in healthy donors, FAP+ EpCAM− cCAFs ranged from 0 to 71 (28 mean ± 22 SD). The mCNPC-derived cCAFs showed positivity for vimentin and intracellular collagen-I. They were viable and functional after sorting, as confirmed by single-cell collagen-I secretion after 48 h of culturing. Two cCAF subpopulations, FAP+CD45− and FAP+CD45+, were identified, both expressing collagen-I and vimentin, but with distinctly different morphologies. Collectively, this study demonstrates the presence of functional and viable circulating CAFs in mCNPC patients, suggesting the role of these cells in prostate cancer

    Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival

    Get PDF
    Circulating tumour cells (CTC) in patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. Classification of CTC however remains subjective, as they are morphologically heterogeneous. We acquired digital images, using the CellSearch™ system, from blood of 185 castration resistant prostate cancer (CRPC) patients and 68 healthy subjects to define CTC by computer algorithms. Patient survival data was used as the training parameter for the computer to define CTC. The computer-generated CTC definition was validated on a separate CRPC dataset comprising 100 patients. The optimal definition of the computer defined CTC (aCTC) was stricter as compared to the manual CellSearch CTC (mCTC) definition and as a consequence aCTC were less frequent. The computer-generated CTC definition resulted in hazard ratios (HRs) of 2.8 for baseline and 3.9 for follow-up samples, which is comparable to the mCTC definition (baseline HR 2.9, follow-up HR 4.5). Validation resulted in HRs at baseline/follow-up of 3.9/5.4 for computer and 4.8/5.8 for manual definitions. In conclusion, we have defined and validated CTC by clinical outcome using a perfectly reproducing automated algorithm

    Genome-wide association study of cardiovascular disease in testicular cancer patients treated with platinum-based chemotherapy

    Get PDF
    Genetic variation may mediate the increased risk of cardiovascular disease (CVD) in chemotherapy-treated testicular cancer (TC) patients compared to the general population. Involved single nucleotide polymorphisms (SNPs) might differ from known CVD-associated SNPs in the general population. We performed an explorative genome-wide association study (GWAS) in TC patients. TC patients treated with platinum-based chemotherapy between 1977 and 2011, age ≤55 years at diagnosis, and ≥3 years relapse-free follow-up were genotyped. Association between SNPs and CVD occurrence during treatment or follow-up was analyzed. Data-driven Expression Prioritized Integration for Complex Trait (DEPICT) provided insight into enriched gene sets, i.e., biological themes. During a median follow-up of 11 years (range 3-37), CVD occurred in 53 (14%) of 375 genotyped patients. Based on 179 SNPs associated at p ≤ 0.001, 141 independent genomic loci associated with CVD occurrence. Subsequent, DEPICT found ten biological themes, with the RAC2/RAC3 network (linked to endothelial activation) as the most prominent theme. Biology of this network was illustrated in a TC cohort (n = 60) by increased circulating endothelial cells during chemotherapy. In conclusion, the ten observed biological themes highlight possible pathways involved in CVD in chemotherapy-treated TC patients. Insight in the genetic susceptibility to CVD in TC patients can aid future intervention strategies

    Microsieves for the detection of circulating tumor cells in leukapheresis product in non-small cell lung cancer patients

    Get PDF
    Background: Circulating tumor cells (CTC) in non-small cell lung cancer (NSCLC) patients are a prognostic and possible therapeutic marker, but have a low frequency of appearance. Diagnostic leukapheresis (DLA) concentrates CTC and mononuclear cells from the blood. We evaluated a protocol using two VyCAP microsieves to filter DLA product of NSCLC patients and enumerate CTC, compared with CellSearch as a gold standard. Methods: DLA was performed in NSCLC patients before starting treatment. DLA product equaling 2×108 leukocytes was diluted to 9 mL with CellSearch dilution buffer in a Transfix CTC tube. Within 72 hours the sample was filtered with a 7 μm pore microsieve and subsequently over a 5μm pore microsieve. CTC were defined as nucleated cells which stained for cytokeratin, but lacked CD45 and CD16. CellSearch detected CTC in the same volume of DLA. Results: Of 29 patients a median of 1.4 mL DLA product (range, 0.5-4.1) was filtered (2% of total product) successfully in 93% and 45% of patients using 7 and 5 μm pores, respectively. Two DLA products were unevaluable for CTC detection. Clogging of the 5 μm but not 7 μm microsieves was positively correlated with fixation time (ρ=0.51, P<0.01). VyCAP detected CTC in 44% (12/27) of DLA products. Median CTC count per mL DLA was 0 [interquartile range (IQR): 0-1]. CellSearch detected CTC in 63% of DLA products (median =0.9 CTC per mL DLA, IQR: 0-2.1). CTC counts detected by CellSearch were significantly higher compared with VyCAP (P=0.05). Conclusions: VyCAP microsieves can identify CTC in DLA product, but workflows need to be optimized

    Construction of repeat-free fluorescence in situ hybridization probes

    Get PDF
    FISH probes are generally made out of BAC clones with genomic DNA containing a variable amount of repetitive DNA that will need to be removed or blocked for FISH analysis. To generate repeat free (RF) Probes without loss in genomic coverage, a random library is made from BAC clones by whole-genome amplification (WGA). Libraries are denatured in the presence of excess C0t-1 DNA and allowed to re-anneal followed by digestion of all double-stranded elements by duplex-specific nuclease (DSN). Selective amplification of all elements not containing repetitive sequences is realized by a sequential amplification. The final RF products can be re-amplified and used as a stock for future probe production. The RF probes have a lower background, the signal intensity build up is faster and there is no need for blocking DNA. The signal to background ratio of the RF was higher as compared to repeat containing probes
    corecore