93 research outputs found

    Saturation Physics of Threshold Heat-Flux Reduction

    Get PDF
    The saturation physics of ion-temperature-gradient-driven turbulence is examined in relation to the temperature-gradient variation of the heat flux, which can exhibit an upshift of the critical gradient for significant flux relative to the linear instability threshold. Gyrokinetic measurements of saturation properties and spectral energy transfer, which will be defined in Sec. II, are presented, indicating that the physics of saturation is fundamentally unchanged on either side of the upshifted gradient. To analyze heat transport below and above the upshifted critical gradient, a fluid model for toroidal ion-temperature-gradient turbulence is modified to include the kinetic instability threshold. The model and the heat flux are rendered in the eigenmode decomposition to track the dominant mode-coupling channel of zonal-flow-catalyzed transfer to a conjugate stable mode. Given linear and nonlinear symmetries, the stable mode level and the cross-correlation of the unstable and stable mode amplitudes are related to the unstable mode level via linear physics. The heat flux can then be written in terms of the unstable-mode level, which through a nonlinear balance depends on the eigenmode-dependent coupling coefficients and the triplet correlation time of the dominant coupled modes. Resonance in these quantities leads to suppressed heat flux above the linear threshold, with a nonlinear upshift of the critical gradient set by the resonance broadening of a finite perpendicular wavenumber and collisionality.</p

    Threshold Heat-Flux Reduction by Near-Resonant Energy Transfer

    Get PDF
    Near-resonant energy transfer to large-scale stable modes is shown to reduce transport above the linear critical gradient, contributing to the onset of transport at higher gradients. This is demonstrated for a threshold fluid theory of ion temperature gradient turbulence based on zonal-flow-catalyzed transfer. The heat flux is suppressed above the critical gradient by resonance in the triplet correlation time, a condition enforced by the wave numbers of the interaction of the unstable mode, zonal flow, and stable mode.</p

    Effect of Triangularity on Ion-Temperature-Gradient-Driven Turbulence

    Get PDF
    The linear and nonlinear properties of ion-temperature-gradient-driven (ITG) turbulence with adiabatic electrons are modeled for axisymmetric configurations for a broad range of triangularities δ, both negative and positive. Peak linear growth rates decrease with negative δ but increase and shift toward a finite radial wavenumber kx with positive δ. The growth-rate spectrum broadens as a function of kx with negative δ and significantly narrows with positive δ. The effect of triangularity on linear instability properties can be explained through its impact on magnetic polarization and curvature. Nonlinear heat flux is weakly dependent on triangularity for |δ| ≤ 0.5, decreasing significantly with extreme δ, regardless of sign. Zonal modes play an important role in nonlinear saturation in the configurations studied, and artificially suppressing zonal modes increased nonlinear heat flux by a factor of about four for negative δ, increasing with positive δ by almost a factor of 20. Proxies for zonal-flow damping and drive suggest that zonal flows are enhanced with increasing positive δ.</p

    Electromagnetic turbulence in increased β plasmas in the Large Plasma Device

    Get PDF

    Kinetic Turbulence

    Full text link
    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al. (eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library 407, Springer-Verlag Berlin Heidelberg (2015

    Soluble forms of tau are toxic in Alzheimer's disease

    Get PDF
    Accumulation of neurofibrillary tangles (NFT), intracellular inclusions of fibrillar forms of tau, is a hallmark of Alzheimer Disease. NFT have been considered causative of neuronal death, however, recent evidence challenges this idea. Other species of tau, such as soluble misfolded, hyperphosphorylated, and mislocalized forms, are now being implicated as toxic. Here we review the data supporting soluble tau as toxic to neurons and synapses in the brain and the implications of these data for development of therapeutic strategies for Alzheimer’s disease and other tauopathies

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials
    • …
    corecore