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Abstract

The saturation physics of ion-temperature-gradient-driven turbulence is examined in relation

to the temperature-gradient variation of the heat flux, which can exhibit an upshift of the critical

gradient for significant flux relative to the linear instability threshold. Gyrokinetic measurements

of saturation properties and spectral energy transfer (which will be defined in Sec. II) are

presented, indicating that the physics of saturation is fundamentally unchanged on either side

of the upshifted gradient. To analyze heat transport below and above the upshifted critical

gradient, a fluid model for toroidal ITG turbulence is modified to include the kinetic instability

threshold. The model and the heat flux are rendered in the eigenmode decomposition to track

the dominant mode-coupling channel of zonal-flow-catalyzed transfer to a conjugate stable mode.

Given linear and nonlinear symmetries, the stable mode level and the cross correlation of the

unstable and stable mode amplitudes are related to the unstable mode level via linear physics.

The heat flux can then be written in terms of the unstable-mode level, which through a nonlinear

balance depends on the eigenmode-dependent coupling coefficients and the triplet correlation

time of the dominant coupled modes. Resonance in these quantities leads to suppressed heat flux

above the linear threshold, with a nonlinear upshift of the critical gradient set by the resonance

broadening of finite perpendicular wavenumber and collisionality.



1 Introduction

Improving plasma confinement has remained a critical goal for magnetically confined fusion plasmas

for decades [1]. A chief concern has been confinement losses associated with microturbulence. De-

spite significant progress in identifying and utilizing strategies for reducing losses associated with

turbulence [2, 3, 4], new devices such as ITER and SPARC [5] have stringent specifications for

transport relative to empirical benchmarks, and their achievement will require effort and skill on

the part of experimenters. Beyond reaching overall confinement milestones, there is considerable

advantage in being able to achieve transport control with selectivity relating to both location and

time [4]. To achieve such advances, it will be necessary to thoroughly understand the plasma tur-

bulence associated with confinement losses. Such understanding will furthermore enable transport

reduction strategies through the design of three-dimensional magnetic fields in stellarator configu-

rations [6], including those that seek lower transport levels by improving the efficiency of nonlinear

energy transfer [7].

There is a well-known but poorly understood transport-reduction phenomenon whose study

represents an opportunity to better understand the saturation of important micro-instabilities and

physics that lowers transport rates. We refer to the so-called Dimits shift, the onset of significant

heat transport at the nonlinear critical gradient (NLCG), a higher gradient than the linear insta-

bility threshold [8]. In the region below the NLCG but above the linear threshold, the heat flux

is low relative to expectations based on linear drive strength but not zero, representing a gradient

range of strongly but not completely suppressed transport. This phenomenon is observed in nonlin-

ear simulations of ion-temperature-gradient-driven (ITG) turbulence with both gyrokinetic [9] and

fluid models [10]. It also occurs for density-gradient-driven trapped electron turbulence [11]. We

argue that the upshift is an integral part of the mechanism for saturation of ITG turbulence that

has already been studied above the NLCG [12]. This mechanism involves the transfer of energy

to stable modes through the zonal flow. When included in a model with the physics of the linear

instability threshold, this mechanism reproduces many features of the critical-gradient upshift [10].

It is also consistent with detailed analyses of gyrokinetic simulations described in Sec. 2, which
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Figure 1: The energy drive and energy dissipation averaged over z and time, and summed over
ky as a function of kx. Over the wavenumbers plotted, the energy dissipation rate is much larger
within the unstable range than outside it. The absolute values of the total area under both curves
are ≈ 4.78.

suggest that salient aspects of the saturated state are qualitatively the same on either side of the

NLCG.

Despite numerous attempts to understand the critical-gradient upshift, none is considered

definitive [13, 14, 15, 16, 17, 18, 19]. Suppression of transport below the NLCG by zonal-flow

shearing has been a recurring theme, a notion that requires zonal-flow shearing to lose effectiveness

above the NLCG [13, 14, 15, 16]. While zonal flows are excited in ITG turbulence and are known

to reduce turbulence levels [8], they do this primarily by enabling energy transfer to stable modes

[20, 21]. As shown in Sec. 2, the zonal-flow shearing hypothesis is at odds with a number of

observations of the nonlinear turbulent state in gyrokinetics. Other mechanisms for the critical-

gradient upshift involve adjustments of spatial fluctuation structure to inhomogeneous zonal flows

with non-uniform shear [19], or aspects of mode coupling [22]. Numerous results have shown that

the large-scale stable modes are critical in the saturation of ITG turbulence [12, 23, 24], however,

those are not taken into consideration in these mechanisms.

ITG turbulence has been well characterized by observations from gyrokinetic and fluid simu-
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lations. While most observations are made above the NLCG, we will show in Sec. 2 that turbulence

features remain similar below the NLCG. Key features include the following. 1) In the wavenumber

range of instability there is a large removal rate of fluctuation energy by nonlinearly excited stable

modes [25]), which can be seen in Fig. 1, where the result is derived from an adiabatic-electron

Cyclone-Base-Case GENE simulation with ωTi = 7 (in units of R0/LTi , the ratio of major radius

and temperature gradient scale length). 2) Due to the stable modes, energy transferred toward

small scales is mostly removed from the spectrum before reaching the largest wavenumber of the

unstable range. This is demonstrated in Fig. 1 of Ref. [26], where it should be noted that inertial

transfer, i.e., no energy removal by the stable modes, would yield constant transfer rates. The

energy transfer rate will be explicitly defined in Sec. 2. 3) Energy transfer to the stable modes goes

through the zonal flow, and its rate matches the energy input rate from the instability (see Fig. 9

of Ref. [20]). Net energy uptake by the zonal flow is small (< 10%) in relation with the energy

transferred to the stable mode. 4) The triplet decorrelation rate of the interaction of unstable

mode, stable mode, and zonal flow, which mediates saturation, is a minimum relative to that of

other interactions (see Fig. 13 of Ref. [20]). These features need to be accounted for in theories of

the critical-gradient upshift.

These observations contradict foundational tenets of the shearing paradigm for zonal-flow

regulation. Consider, for example, the wave-action-invariance argument of zonal-flow regulation

via shearing [27]: shearing enhances energy transfer to kx > 1 (here and throughout this paper

wavenumbers are all normalized with the ion sound gyroradius ρs); energy at these scales then

lowers the wave frequency, which in turn lowers wave energy to maintain invariance of wave action;

lower wave energy is then offset by an increase in zonal flow energy, which through its shearing

perpetuates the process. The underlying premise of wave-action invariance is invalidated by the

sizable large-scale dissipation seen in Fig. 1. The subsequent effects of the wave-action-invariance

argument are contradicted by observation: most cascaded energy fails to reach even kx = 0.5 before

being removed from the system, the zonal flow only takes up a small fraction of transferred energy,

and the nonlinear decorrelation rate is minimized, while in the shearing hypothesis it increases.
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Our analysis of saturation below and above the NLCG starts with nonlinear simulations

using the gyrokinetic code Gene [28]. We find that the heat flux below the NLCG increases slowly

relative to the growth rate, then smoothly but rapidly increases its slope near the NLCG. The

latter is not precisely defined or indicative of a bifurcation, as evident from continuously varying

nonlinear energy transfer rates that set fluctuation levels. Both direct transfer in single sets of

wavenumber triplets and cascading transfer through a series of triplets are qualitatively the same

below and above the NLCG. Moreover, the character of this transfer will be shown in Sec. 2 to be

consistent with saturation by stable modes accessed via zonal flows. Both the zonal-flow shearing

rate and the ratio of shearing rate with linear growth rate are larger above the NLCG than below

it.

Consistent with these results, we develop a theory for the heat flux that is valid below and

above the NLCG [10]. Both regimes are nonlinear and will be called the low and high transport

regimes, respectively. The theory is based on a tractable nonlinear fluid model [12] modified to

recover the linear dispersion relation and instability threshold condition of a drift-kinetic calcula-

tion [29]. Low and high transport regimes naturally emerge from a single saturation mechanism

— energy transfer through the zonal flow to stable modes. This interaction is nearly resonant,

producing weak transport near threshold. Transport increases sharply at higher gradients due the

gradient dependencies in resonance-broadening effects.

The heat flux depends on the fluctuation levels of unstable and stable modes, and the complex-

valued cross-correlation of the two modes. We solve for these quantities using conjugate symmetry

and nonlinear energy conservation. The relationship between levels of unstable and stable modes is

consistent with dissipation-rate equipartition [24]. Because of nonlinear symmetry that leads to the

cancellation of nonlinear terms affecting the eigenmode cross correlation, its phase depends mostly

on linear physics. With these relationships, a single saturation balance suffices to determine the

heat flux. This balance is solved accounting for all eigenmode levels and and explicitly handling

wavenumber variation using a Markovian procedure.

The near-resonant effects that suppress the flux just above the linear threshold include a

5



complex-wave-frequency resonance from the correlation time of the triplet interaction, a measure

of the nonlinear interaction lifetime, of the unstable mode, zonal flow, and stable mode. In the limit

that the collisionality and perpendicular wavenumber go to zero, the linear part of the correlation

time goes to infinity, which allows a vanishingly small turbulence level to match the energy input

of the instability, resulting in zero heat flux. The resonance is broadened by collisionality and the

ion polarization drift, both of which give a small residual heat flux that increases with temperature

gradient. The nonlinear coupling coefficient, which is a function of eigenmode frequency, also

contributes to the small heat flux just above the linear critical gradient, and its eventual steep rise

at larger gradient values.

This paper is organized as follows. Section 2 describes gyrokinetic observations of turbulence

in the low and high transport regimes. In Sec. 3, a fluid model for toroidal ITG turbulence is

introduced, modified to match a kinetic dispersion relation and its critical gradient for instability,

and transformed to the eigenmode decomposition. In Sec. 4, the relationships between eigenmode

amplitudes and the eigenmode cross correlation are derived and used to obtain a succinct expression

for the heat flux in terms of the unstable mode level. Statistical closure theory is applied in Sec. 5,

and an expression for the eddy damping rate associated with zonal-flow-catalyzed transfer is derived.

The nonlinear balance for the overall turbulence level is solved in Sec. 6 and used to obtain a heat

flux expression valid in low and high transport regimes. Section 7 provides concluding remarks.

2 Comparative Turbulence Analysis

While the heat flux and turbulence levels are small in the low-transport regime, they are not zero.

This can be seen in Fig. 2, where the linear critical gradient is ωT i ≈ 4.75 and the NLCG is

ωT i ≈ 6.5. Given these values, ωT i = 5.5 is in the low-transport regime, ωT i = 6.5 is around the

NLCG, and ωT i = 7 is above the NLCG. Gyrokinetic simulations show that in many respects, aside

from overall levels, the turbulence in the low and high transport regimes is very similar. Figures

2–5 show results from analyses of gyrokinetic simulation data obtained with the turbulence code

Gene [28] for the parameters of the collisionless adiabatic-electron Cyclone-Base-Case [8]. The
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Figure 2: Time history of Qes
i and ΦZF for saturated ITG turbulence from gyrokinetic simulations

for ωT i = 5.5, ωT i = 6.5, and ωT i = 7. The NLCG is at ωT i ≈ 6.5.

Gene simulation details can be found in the appendix of Ref. [30]. In Fig. 3, the energy spectrum

Ek = Re

∑
j

∫
nj0Tj0
Fj0

[
gj,k +

qjFj0
Tj0

χj,k

]∗
gj,Kdzdv

 , (1)

is plotted as a function of kx and ky, the radial and poloidal wavenumbers, respectively, where

gj,k is the nonadiabatic distribution function for species j with wavenumber k, χj,k is the modified

potential (which, in general, is comprised of both electrostatic and electromagnetic component),

nj0 is the background density, Tj,0 is the background temperature, qj is the charge, Fj0 is the

background Maxwellian, z is the parallel coordinate, and v is the velocity. The plots represent

two values of the temperature gradient ωT i, with ωT i = 5.5 for a), while for b) ωT i = 7. In a) the

ky = 0 energy is plotted at 0.01 of its actual value, while in b) the ky = 0 energy is plotted at 0.1

of its actual value. The spectra are qualitatively similar. Below the NLCG the spectrum extent

is somewhat more restricted in kx and ky, and the peak is shifted moderately to higher ky. Both

of these tendencies are well-matched to the growth rate spectra at the two values of ωT i, which

show reductions of peak growth rate and unstable range by a factor of ∼ 2 for ωT i = 5.5 relative

to ωT i = 7 [30].

7



a)

Figure 3: The time-averaged energy spectra of the ITG turbulence for saturated gyrokinetic sim-
ulations for a) ωT i = 5.5 and b) ωT i = 7. The NLCG is at ωT i ≈ 6.5. Both show strong band
structure in the kx direction, and modes are only strongly excited in the low-k regime. To better
see how energy is distributed the ky = 0 energy is plotted at 0.01 of its actual value in a), while
the ky = 0 energy is plotted at 0.1 of its actual value in b).

In Fig. 4, spectral energy transfer rates 〈Tk,k′〉 are plotted, again for ωT i = 5.5 and 7, where

Tk,k′ = 2Re

∑
j

∫
nj0Tj0
Fj0

[
gj,k +

qjFj0
Tj0

χj,k

]∗ (
k′xky − kxk′y

) [
χj,k′gj,k′′dzdv

] , (2)

the angle brackets represent the time average, and k′′ = k − k′. The energy transfer rate into each

grid cell is registered by color. Energy is transferred directly from the mode (kx, ky) = (0, 0.2). Thus

in Fig. 4 a) energy is removed from (kx, ky) = (0, 0.2) and deposited into (kx, ky) = (0.086, 0.2).

Energy transferred from (kx, ky) = (0, 0.2) to the cells with kx > 0.086 and ky = 0.2 is very small.

In Fig.Fig. 4 a) energy is removed from (kx, ky) = (0, 0.2) and deposited into a number of cells to

its right, with significant energy going into (kx, ky) = (0.086, 0.2) and (kx, ky) = (0.172, 0.2) and

a much smaller quantity going to cells with kx > 0.172 and ky = 0.2. This prominent horizontal

feature represents transfer to modes with ky = 0.2 and various kx, and requires coupling to the zonal

modes (kx, 0). Its prominence reflects the fact that zonal-flow-catalyzed transfer is the dominant

transfer channel. Transfer in the low and high transport regimes is similar; the greater extent of

〈Tk,k′〉 in ky is consistent with a stronger and broader growth rate spectrum above the NLCG.

Fig. 5 shows the energy transferred from modes (0, ky) to wavenumbers on horizontal bands

at different ky through a sequence of interactions with the zonal flow (0.086, 0). The sequence

represents energy moving to higher kx at a single ky = 0.2 by increments of δkx = 0.086, with color

measuring the transfer in each step of the cascade, i.e., into a given cell from the cell immediately
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b)

Figure 4: The time-averaged rate of direct energy transfer from (kx, ky) = (0, 0.2) to grid cells for
a) ωT i = 5.5 and b) ωT i = 7 at saturated state. The prominent horizontal bands for ky = 0.2
represent the major energy transfer channel is the zonal-flow-catalyzed energy transfer.

to its left. A tabular representation of the data involved in making a figure like Fig. 5 is given

in Ref. [21] (Fig. 2). The energy measured is associated with the squared fluctuating distribution

function gj,k, a quantity that is sometimes called the entropy. The transfer rate is defined as

T gk,k′ = 2Re

∑
j

∫
nj0Tj0
Fj0

g∗j,k
(
k′xky − kxk′y

) [
χj,k′gj,k′′dzdv

] . (3)

Panels a) and b) correspond to ωT i = 5.5 and 7, respectively. This cascade analysis shows that

energy is depleted with each step — a conservative (inertial-range) cascade mediated by zonal-

flow interactions would show constant color across kx. Evidently, a significant amount of energy

is lost inside the unstable wavenumber band. This plot is nearly identical to Fig. 1 of Ref. [10],

which shows energy cascaded to stable modes. Moreover, Fig. 1 of Ref. [26], which shows the

zonal-flow-catalyzed energy transfer rate to the higher-kx stable and unstable modes in the range

0 < kx <∼ 0.25 at ky = 0.4, indicates that the stable modes within the unstable range remove

≈ 70% of the energy produced by the unstable modes. Therefore, the cascade depletion is caused

by stable modes. Taken together, panels a) and b) show that energy cascade characteristics are

similar in the low- and high-transport regimes, with differences primarily arising from the larger

fluctuation level and broader growth rate spectrum for ωT i = 7, which leads to a more robust

cascade.

The zonal-flow shearing rate ωs =
∑

kx
k2x|ΦZF|, measured for 4.75 < ωT i < 8, is larger than

the linear growth rate γ. The ratio ωs/γ ≈ 3 just above the linear threshold. As the gradient
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b)

Figure 5: The time-averaged energy transfer in the zonal-flow mediated entropy cascade beginning
at modes with kx = 0 and different ky to higher kx for a) ωT i = 5.5 and b) ωT i = 7 at saturated
state.

increases toward the NLCG the ratio slides to ∼ 1.5, and then above the NLCG jumps to > 4.

This behavior is shown in Fig. 2 of Ref. [10]. This is inconsistent with the notion that the larger

fluctuation levels above the NLCG are due to a loss of efficacy of the shearing mechanism, and

indicates that zonal flow shearing is not the primary arbiter of the gradient upshift.

Figs. 3–5 indicate that there is a range of strong energy removal embedded in the energy

containing scales of ITG turbulence, but unlike collision-induced dissipation, energy removal is

only accessed by the nonlinearity. This range of strong energy removal accounts for the well known

observation that transport due to ITG turbulence is insensitive to enhanced resolution in scales

beyond the unstable range. With respect to temperature gradient variation, Figs. 3–5 indicate that

the energy balances that mediate saturation do not show obvious changes above the NLCG relative

to below it, beyond those tied to the larger growth rates and fluctuation levels. Importantly, these

figures illustrate each of the characterizations of ITG turbulence listed in Sec. 1. They show the

large energy removal from stable modes at low wavenumber, the significant depletion of cascaded

energy, and the role of the zonal flow in mediating energy transfer to stable modes. Critically,

these features apply in both the low and high transport regimes. These results strongly suggest

that zonal-flow-catalyzed transfer to stable modes mediates saturation in both regimes, and indicate

that the theory previously developed for the strong-transport regime [12] should have features of

the critical-gradient upshift if modified to account for the ITG instability threshold.
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3 Threshold Fluid Model

We develop a fluid theory that is valid in both the low and high transport regimes. The theory is

based on a reduced model for toroidal ITG turbulence that has been shown to capture the impor-

tant properties of ITG turbulence discussed in the previous section [12]. This model yields solutions

with strong zonal flows and provides insight about zonal-flow-catalyzed interactions, including the

central idea that turbulence saturation is governed by the efficiency of energy transfer from the

unstable modes to stable modes via nonlinear coupling with the zonal flow. The magnitude of

the nonlinearity is determined by coupling coefficients, which quantify coupling strength between

the linear eigenmodes; the eigenmode amplitudes; and the complex phases between coupled eigen-

modes. The crucial complex phase for saturation is that of the cubic fluctuation correlation that

governs energy transfer. With the nonlinearity described explicitly in these terms, the mechanism

of turbulence saturation becomes more transparent.

The saturation theory was developed for a version of the model that does not include all

necessary threshold physics associated with the onset of linear instability. As such it will not

produce a reasonable description of the low and high transport regimes. Therefore, we reformulate

the model to make its linear dispersion relation match that of a simplified drift-kinetic linear-

instability calculation given by Hammett [29]. In the kinetic calculation, the ∇B and curvature

drifts are retained in the equation for the perturbed ion distribution, yielding

(−iω + ik‖v‖ + iωdv)f̃i = −i

{
− Tik

eBLn

[
1 + η

(
v2‖

2v2i
+
µB

v2i
− 3

2

)]
+ ωdv + k‖v‖

}
eφ

Ti
Fi0 , (4)

where ωdv = ωd(v
2
‖ + µB)/v2i is the particle-velocity-dependent magnetic drift frequency, with

ωd = −Tik/(eBR)(cos y + ŝy sin y) = −Tik/(eBR)[1 +O(y2)] for y � 1. Here, y is the ballooning

angle (angular distance along the field), ŝ is the magnetic shear, k is the poloidal wavenumber,

Fi0 = (n0(x)/Ti0(x)3/2) exp[−m(v2‖/2 + µB)/Ti0(x)] is the equilibrium distribution, e is the ion

charge, R is the major radius, and n0(x) and Ti0(x) are profiles of equilibrium density and ion

temperature. Perpendicular velocity is expressed in terms of the magnetic moment µ = (1/2)v2⊥/B,

while vi = (2Ti/mi)
1/2 is the ion thermal velocity, η = Ln/LT i, and Ln and LT i are the density and
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ion temperature gradient scale lengths, respectively.

The mode dispersion relation is obtained from the quasineutrality condition, ñi = ñe, with

ñe = eφ/Te0 given by the adiabatic electron response, and ñi =
∫
d3vf̃i. Making the substitutions,

n0
eφ

Te0
=

∫
d3v
−ωT∗v + ωdv

ω − ωdv
Fi0

eφ

Ti0
, (5)

where, consistent with the toroidal ITG branch, we have assumed k‖v‖ � ω, ωdv, ω
T
∗v. The

ion polarization contribution to the density has been neglected but will be introduced when the

kinetic results are adapted to a fluid model. For ITG instability, it is possible to impose the

approximation ω � ωdv, which allows expansion of the denominator in Eq. (5) and greatly simplifies

the integration. With this assumption, (ω−ωdv)
−1 = ω−1[1+(ωdv/ω)+. . .]. Performing the velocity

integrals, Eq. (5) reduces to

Ti0
Te0

=
2ωd

ω
− ω∗

ω
+

7ω2
d

ω2
− 2ωdω∗

ω2
(1 + η) , (6)

where ω∗ = −Ti0k/(eBLn). In the weak-density-gradient limit, where ω∗ � ω∗(1 + η), ωd, solution

of the quadratic dispersion relation yields

ω =

[
ωd ±

√
ω2
d −

Ti0
Te0

(2ωdω̄∗η − 7ω2
d)

]
Te0
Ti0

, (7)

where ω̄∗η = ω∗(1 + η). Instability requires that ω̄∗η exceed a threshold arising from the magnetic

drift frequency, i.e., ω̄∗η > (ωd/2)(7 + Te0/Ti0). For LT i � Ln (i.e., η � 1), this corresponds to

a critical gradient given by 1/LT i > 1/LT c = [1/(2R)](7 + Te0/Ti0). Hereafter, we will assume

Te0/Ti0 = 1.

Both the kinetic calculation and the original fluid model for for the strong-transport regime

[12, 17, 31] have quadratic dispersion relations. Therefore, it is possible to modify the fluid model

so that it reproduces the kinetic dispersion relation. The reformulated fluid model is

dpk
dt

+
[
iεky

(
1 +
√

8
)

+ χk4⊥

]
pk + iky (1 + η)φk = −

∑
k′

(k′ẑ · k)φk′pk′′ , (8)

[
δ(ky) + k2⊥

] dφk
dt
− 2iεkypk +

[
iky + νk2⊥ + ikyε

(
1−
√

8
)]
φk (9)

=
1

2

∑
k′

(k′ × ẑ · k)(k′2⊥ − k′′2⊥ )φk′φk′′ ,
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where pk and φk, respectively, are Fourier amplitudes of pressure and electrostatic potential, ν and

χ are coefficients of collisional dissipation, and ε = Ln/R. The wavenumber subscript k refers to

the perpendicular wavevector k, with a poloidal component ky [denoted k in Eqs. (4)–(7)] and a

radial component generated in the ballooning representation by shifts of the mode structure along

the field line with respect to the outboard midplane. Aside from this shift required for the mode

coupling k′× ẑ ·k, the eigenmodes are assumed to be strongly ballooning, making Eqs. (8) and (9)

local in ballooning angle. The adiabatic electron response is δ(ky), valid for all ky, i.e., δ(ky) = 0

for ky = 0, and δ(ky) = 1 for ky 6= 0. In Eqs. (8) and (9), the parallel scale is normalized to Ln,

and perpendicular scales are normalized to the sound gyroradius ρs, rendering ωd as kyε. The ion

polarization drift has been included, producing k2⊥dφk/dt and the nonlinearity in Eq. (9). The most

important difference between this threshold model and prior versions in the literature [12, 17, 31] is

the term iεky(1 +
√

8)pk in the pressure equation. Absent in prior versions, it provides the correct

linear instability threshold. There are other less significant variations as follows. While Te0 = Ti0

is assumed in all models under discussion, in Ref. [31] ν and χ are not included and the factor

(1−
√

8) in Eq. (9) is replaced by −2. In Refs. [12, 17] the vorticity equation has −iεkypk for the

pressure term, and the term ikyε(1−
√

8)φk does not appear in any form.

Consistent with a low-wavenumber regime, we assume χk2⊥ � ν, in which case the dispersion

relation is given by

ω1,2 =
1

2
(
1 + k2⊥

){ky + kyε
[
2 +

(
1 +
√

8
)
k2⊥

]
− iνk2⊥

±
√
−8εk2y (1 + η)

(
1 + k2⊥

)
+
[
−ky + εky

(
4
√

2 +
(

1 +
√

8
)
k2⊥

)
+ iνk2⊥

]2}
, (10)

where ± distinguishes the unstable and stable branches ω1,2. There is no assumption of weak

density gradient in Eq. (10). However, we recover an exact match to Eq. (7) for Te0 = Ti0 in the

weak-density limit. Since the Ln dependence in Eq. (10) is hidden in normalizations, its weak-

density limit is readily checked by replacing Ln →∞ with ky → 0, subject to ky(1 + η) = ω∗η ∼ 1,

εky = ωd ∼ 1, and k2⊥ � 1.

To use Eqs. (8) and (9) for deriving the ITG heat flux in the low and high transport regimes,

13



it is necessary to transform them to the eigenmode decomposition, which represents an arbitrary

state pk and φk as a finite-amplitude combination of the two linear eigenmodes, to whit,(
pk
φk

)
= β1(k)

(
R1(k)

1

)
+ β2(k)

(
R2(k)

1

)
. (11)

Here, [R1(k), 1] and [R2(k), 1] are the eigenvectors of the unstable and stable modes, with eigen-

vector components R1 and R2 given by

R1,2(k) =
−ω1,2(1 + k2⊥) + ky[1 + ε(1−

√
8)]− iνk2⊥

2kyε
. (12)

The eigenmode amplitudes β1(k) and β2(k) are governed by nonlinear balances consistent with the

transformation of Eqs. (8) and (9) by the decomposition, Eq. (11). These equations are

β̇l + iωlβl =
∑

k′,k′y 6=0

C
(k,k′)
lmn β′mβ

′′
n +

∑
k′x

{[
C

(k,k′)
lFn v′zβ

′′
n + C

(k,k′)
lPn p′zβ

′′
n

]∣∣∣
k′y=0

+
[
C

(k,k′)
lmF β′mv

′′
z + C

(k,k′)
lmP β′mp

′′
z

]∣∣∣
k′y=ky

}
, (13)

v̇z + νvz =
∑
k′

C
(k,k′)
Fmn β

′′
mβ
′
n

∣∣∣
ky=0

, (14)

ṗz + χk2xpz =
∑
k′

C
(k,k′)
Pmn β

′′
mβ
′
n

∣∣∣
ky=0

, (15)

where l, m, and n take the values 1 or 2, and repetition of these indices within a given term implies

summation from 1 to 2, and F and P represent zonal flow and zonal pressure. Equations for the

nonlinear coupling coefficients will be given below. In writing Eqs. (13)–(15), the zonal flow and

zonal pressure, which are eigenmodes for ky = 0, are written explicitly. A shorthand notation

has been introduced for wavenumber dependence as follows: βj = βj(k)|ky 6=0, β
′
j = βj(k

′)|ky′ 6=0,

β′′j = βj(k − k′)|k′′y 6=0, vz = vz(k)|ky=0, v
′
z = vz(k

′)|k′y=0, v
′′
z = vz(k − k′)|k′y=ky , pz = pz(k)|ky=0,

p′z = pz(k
′)|k′y=0, and p′′z = pz(k − k′)|k′y=ky , where vz = ikxφky=0 = ikxφz is the zonal flow and pz

is the zonal pressure.

Figs. 2 and 3 indicate that the terms of the right-hand side of Eq. (13) with factors v′z and v′′z

dominate the nonlinearities both below and above the NLCG in the corresponding gyrokinetic sys-

tem. This result can be built into Eqs. (13)–(15) by introducing an ordering scheme previously used

for saturation analysis above the NLCG [12]. For that ordering a small parameter ε̂ is introduced,
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and it is assumed that

ky, k⊥ ∼ ε̂2 , vz/pz ∼ ε̂ , β1,2/φz ∼ ε̂2 . (16)

These expressions reflect features observed in simulations, but also are rooted in physics. The

first assumes that spectral energy transfer, fluctuation levels, and transport rates are dominated

by long wavelengths, consistent with the large fraction of energy removed by stable modes at long

wavelengths. The second is consistent with the long-wavelength assumption, given that pz and

φz are similar and vz ∼ kxφz. The third reflects the common observation that spectra peak at

zonal wavenumbers. This is not the only ordering consistent with the dominance of the zonal-flow-

catalyzed interaction, but is sufficient to produce it. When applied to Eqs. (13)–(15), the zonal

pressure decouples, and the system reduces to

β̇l + iωlβl =
∑
k′x

{[
C

(k,k′)
lF j v′zβ

′′
j

]∣∣∣
k′y=0

+
[
C

(k,k′)
ljF β′jv

′′
z

]∣∣∣
k′y=ky

}
, (17)

v̇z + νvz =
∑
k′

[
C

(k,k′)
Fmn β

′′
mβ
′
n

]∣∣∣
ky=0

, (18)

where l, m, and n are 1 or 2, and the coupling coefficients are given by

C
(k,k′)
lFn =

(−1)l−1(−iky)
2 (R1(k)−R2(k))

[
Rn(k′′)−

R3−l(k)[k′′2⊥ − k′2⊥]

1 + k2⊥

]
, (19)

C
(k,k′)
lmF =

(−1)l−1(−ik′y)
2 (R1(k)−R2(k))

[
Rm(k′)−

R3−l(k)[k′′2⊥ − k′2⊥]

1 + k2⊥

]
, (20)

C
(k,k′)
Fmn =

−ik′y(k′′2⊥ − k′2⊥)

2
. (21)

Equations (17) and (18) represent an energy-conserving reduction of the larger set of nonlinear

interactions present in Eqs. (13)–(15). Consequently, these equations, which isolate zonal-flow-

catalyzed transfer to the stable mode, give a realistic model of the physics that dominates saturation

and transport in the ITG-driven system under investigation. The coupling coeefficients of Eqs. (19)

and (20) combine the two nonlinearities of Eqs. (8) and (9). The first term in the square brackets

represents the pressure nonlinearity of Eq. (8) and the second the vorticity nonlinearity of Eq. (9).
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4 Relationships between Turbulent Correlations

The ion heat flux is given by Qi = −
∑

k kyIm〈φ−kpk〉, requiring a solution for the nonlinear

correlation 〈φ−kpk〉 consistent with steady state solutions of Eqs. (17) and (18). The first step is

to render the flux in the eigenmode decomposition by substituting from Eq. (11), yielding

Qi = −
∑
k

ky

[
ImR1 |β1|2 + ImR2 |β2|2 + Im(R1 +R2)Re〈β1β∗2〉+ Re(R1 −R2)Im〈β1β∗2〉

]
. (22)

Noting that ImR1 is proportional to γ, the first term is essentially the quasilinear flux, assuming

|β1|2 is supplied from a nonlinear simulation or a measurement. The remaining terms, which

arise because of the nonlinear excitation of the stable mode, require solution for |β2|2 and 〈β1β∗2〉.

There are also parametric dependencies in |β1|2 that can be missed in quasilinear theory and will

be treated here, as well. Missed dependencies are illustrated by nonlinear finite-β electromagnetic

stabilization, where the ITG heat flux decreases with β more strongly than the growth rate [32, 38].

The parameter β is the plasma pressure normalized by the magnetic pressure. This can be explained

in part by an important scaling of |β1|2 with β arising from the nonlinear correlation time that

mediates saturation [26, 33]. In the modeling of Refs. [26, 33], contributions to the heat flux from

|β2|2 and 〈β1β∗2〉 were neglected. Here, they are retained and calculated to formulate a description

of the critical-gradient upshift.

In saturation, |βj |2 and 〈β1β∗2〉 can be evaluated from energy evolution equations of statistical

closure theory, as done in Ref. [12]. These equations are linearized when energy transfer is domi-

nated by the interaction of unstable mode, stable mode, and zonal flow. The equations have robust

parameter scalings, but their solution requires the inversion of a large matrix, and interpretation of

individual roots is difficult. Here we utilize an approach based on nonlinear conservation properties

and the nearly conjugate symmetry of unstable and stable modes for small ν. Conjugate symmetry

carries over to the nonlinear couplings in the eigenmode decomposition, as seen in Eqs. (19) and

(20). These symmetries produce relationships between |β2|2, 〈β1β∗2〉, and |β1|2 that for low colli-

sionality, small wavenumber, and steady state are governed by linear physics. As a result, Eq. (22)

can be expressed solely in terms of |β1|2. We derive these relationships in this section and solve a
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nonlinear balance for |β1|2 in Sec. 5.

We first consider the complex correlation 〈β1β∗2〉 and the physics of its cross phase, which have

received limited attention. For turbulence governed by Eqs. (17) and (18), the phase is dominated

by linear physics. Consider summing Eq. (17) over l = 1, 2, yielding

β̇1 + β̇2 + iω1β1 + iω2β2 =
∑
k′x

[(
C

(k,k′)
1F1 + C

(k,k′)
2F1

)
β′′1 +

(
C

(k,k′)
1F2 + C

(k,k′)
2F2

)
β′′2

]
v′z

∣∣∣
k′y=0

+
∑
k′x

[(
C

(k,k′)
11F + C

(k,k′)
21F

)
β′1 +

(
C

(k,k′)
12F + C

(k,k′)
22F

)
β′2

]
v′′z

∣∣∣
k′y=ky

.(23)

From Eqs. (19) and (20), it is readily found that

C
(k,k′)
1F1 + C

(k,k′)
2F1 = C

(k,k′)
1F2 + C

(k,k′)
2F2 =

−iky
2(1 + k2⊥)

(k′′2⊥ − k′2⊥) , (24)

C
(k,k′)
11F + C

(k,k′)
21F = C

(k,k′)
12F + C

(k,k′)
22F =

−ik′y
2(1 + k2⊥)

(k′′2⊥ − k′2⊥) . (25)

In Eqs. (24) and (25), the pressure nonlinearity contributions cancel out, while the vorticity non-

linearity contributions add, generating the rightmost expressions. The cancellation occurs because

energy removed from the unstable mode through the zonal flow by the pressure nonlinearity is

deposited in total into the stable mode. On the other hand, the vorticity nonlinearity removes

energy from both modes and deposits it into the zonal flow. It therefore does not cancel in a sum

involving β̇1 and β̇2.

The vorticity nonlinearity is smaller than the pressure nonlinearity by a factor k2⊥. This is

quantified under the ordering that describes the saturation energetics, ClFn ∼ ClmF ∼ k ∼ ε̂2 and

CFln ∼ ε̂6, where ε̂ is the small ordering parameter. Because the pressure nonlinearity cancels in

Eqs. (24) and (25),

β̇1 + β̇2 + iω1β1 + iω2β2 = O(ε̂6) · v′zβ′′n . (26)

The saturated value of v′z is order unity, hence the right-hand side of Eq. (26) is much smaller than

the left-hand side. Consequently, the cross phase of 〈β1β∗2〉, which can be constructed from the

left-hand side of Eq. (26), is dominated by linear physics.

Equation (26) indicates that, in the steady state, there is a fixed relation between β1 and β2.

Accordingly, we adopt the ansatz β2 =
√
κ exp(iθ)β1, where the saturated mode amplitude ratio
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κ ≡ |β2|2 / |β1|2 will be determined from a separate relationship that will be introduced shortly.

Substituting β2 =
√
κ exp(iθ)β1 into Eq. (26), with the right-hand side set to zero, we obtain

(
1 +
√
κeiθ

)
β̇1 + i

(
ω1 + ω2

√
κeiθ

)
β1 = 0 . (27)

We multiply Eq. (27) by β∗1 and sum it with its conjugate equation, obtaining

∣∣∣β̇1∣∣∣2 − 2Im

(
ω1 + ω2

√
κeiθ

1 +
√
κeiθ

)
|β1|2 = 0 . (28)

This is not an equation for |β1|2 or its evolution, because those require a nonlinear balance. Rather,

it is an equation for θ consistent with Eq. (26). Having been constructed at the level of squared

amplitudes, the imposition of a steady-state condition |β̇1|2 = 0 represents the average of an energy-

like quantity with the random phase of the raw amplitude β1 removed. The stationary condition,

aside from the trivial solution |β1|2 = 0, requires

Im

(
ω1 + ω2

√
κeiθ

1 +
√
κeiθ

)
= 0 , (29)

which is the desired expression that sets the value of θ. Rationalizing the denominator, Eq. (29)

implies that

Im
[(
ω1 + ω2

√
κeiθ

)(
1 +
√
κe−iθ

)]
= Im

[
ω1 + ω1

√
κe−iθ + ω2κ+ ω2

√
κeiθ

]
= 0 . (30)

To collect the θ dependence in a single term, we introduce the frequency difference ∆ω = ω2 − ω∗1

and write the two ω2-dependent terms in the right-hand part of the above expression in terms of

∆ω. Solving the resulting expression for θ yields

θ = − tan−1
(

Im(∆ω)

Re(∆ω)

)
+ sin−1

[
Im(ω∗1 − ω2κ)√
κ |ω2 − ω∗1|

]
, (31)

As previously stated, this expression supplies the angle θ in the correlations 〈β1β∗2〉 =
√
κ|β1|2 exp(−iθ),

Re〈β1β∗2〉 =
√
κ|β1|2 cos θ, and Im〈β1β∗2〉 = −

√
κ|β1|2 sin θ that appear in Eq. (22).

The factor κ is a ratio of saturation levels. The levels for |β1|2 and |β2|2 individually depend

on nonlinear balances. However, the similarity properties of nonlinear transfer associated with

energy conservation suggest that the nonlinear transfer rates in equations for |β1|2 and |β2|2 are
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very similar. The ratio of |β1|2 and |β2|2 would then be governed by the ratio of rates of energy

injection and removal. This is an observed feature in gyrokinetic simulations, where there are many

stable modes [24]. For the conditions of Ref. [24], the energy damping rate of each stable mode is

approximately equal for the 1200 modes with smallest damping rates, and their sum balances the

energy injection rate. These rates are given by γj |βj |2. We revisit the tendency of equipartition

of these rates for the present simpler system, formulating it from the properties of the equations

instead of measuring it as an aspect of a simulation.

We assess the energy rates γj |βj |2 from the energy itself, which is given by

E =
∑
ky 6=0

[(
1 + k2⊥ + |R1|2

)
|β1|2 +

(
1 + k2⊥ + |R2|2

)
|β2|2

+ 2
(
1 + k2⊥

)
Re〈β∗1β2〉+ 2Re〈R∗1β∗1R2β2〉

]
+
∑
ky=0

[
|pk|2 + k2⊥ |φk|

2
]
. (32)

Because the nonlinear interactions of Eqs. (17) and (18) are conservative, dE/dt is governed solely

by dissipative terms, i.e., the nonlinearities associated with time derivatives of |βj |2 and 〈β∗1β2〉

cancel each other. In steady state, dE/dt then describes the balance of energy injection and

removal according to

dE

dt
=

∑
ky 6=0

{
2Im(ω1)

(
1 + |R1|2 + k2⊥

)
|β1|2 + 2Im(ω2)

(
1 + |R2|2 + k2⊥

)
|β2|2

+ 2
(
1 + k2⊥

)
Im [(ω∗1 − ω2) 〈β∗1β2〉] + 2Im [R∗1R2 (ω∗1 − ω2) 〈β∗1β2〉]

}
− 2ν

∑
kx

|vz|2
∣∣
ky=0

= 0 . (33)

We first examine Eq. (33) in the collisionless limit, ν = 0, where ω∗1 −ω2 = 0 and |R1|2 = |R2|2. In

this limit, we find that

dE

dt
=

∑
ky 6=0

[
2Im(ω1)

(
1 + |R1|2 + k2⊥

)
|β1|2 + 2Im(ω2

(
1 + |R2|2 + k2⊥

)
|β2|2

]
=

∑
ky 6=0

[
2Im(ω1)

(
1 + |R1|2 + k2⊥

)(
|β1|2 − |β2|2

)]
= 0 , (34)

i.e., the energy injected into turbulence by the unstable modes is removed totally by the stable

mode. With γ1 = −γ2, this implies |β1(k)|2 = |β2(k)|2. This is a reflection of the complex-conjugate

symmetry of the two eigenmodes when ν = 0.
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The collisionless limit is not strictly applicable for saturation with Eqs. (17) and (18), because

collisionality balances the inverse energy transfer of the vorticity nonlinearity in Eq. (18). This gives

rise to the last term of Eq. (33). We are nonetheless interested in the limit of small collisionality,

noting that ν 6= 0 makes ω∗1 6= ω2, R
∗
1 6= R2, and |β1|2 6= |β2|2. To examine the effects of

small collisionality on the ratio κ = |β2|2/|β1|2, we introduce ν into the ordering of Eq. (16) as

ν ∼ k2 ∼ ε̂4. Under this extended ordering, we return to Eq. (33) and examine each term. We note

that k2⊥ does not break conjugate symmetry, i.e., for ν = 0, the equality ω∗1 = ω2 holds with terms

of order k2⊥ included. However, ν itself is multiplied by k2⊥ in ωj and Rj , raising the order of the

symmetry-breaking contributions in the first four terms of Eq. (33). The last term requires special

consideration, as discussed below.

From Eq. (10), we find that ω∗1 = ω2 + O(νk2⊥) = ω2 + O(ε̂6), i.e., the first deviation of ω2

from ω∗1 occurs at sixth order. From Eq. (12), we note that the breaking of conjugate symmetry in

Rj resides in the term proportional to ωj . Hence, R∗1 = R2 +O(νk2⊥). The terms of Eq. (33) with

dependence on the cross-correlation 〈β∗1β2〉 have a factor ω∗1 − ω2 and are therefore O(νk2⊥). The

last term of Eq. (33) is proportional to |vz|2, hence its magnitude requires knowledge of saturation

levels. The levels of |β1|2 and |vz|2 are given in Ref. [12] in terms of basic scalings, and are sufficient

to estimate the order of the term ν|vz|2 in Eq. (33). From Eqs. (33) and (40) of Ref. [12],

|vz|2 =
2γ1
νb

|CF12|
|C1F2|

|β1|2 , (35)

where b is a constant of order unity in the ε̂ expansion.

With this expression, Eq. (33) can be written

2
∑
ky 6=0

|β1|2γ1
(

1 + k2⊥ + |R1|2 −
|CF12|
b|C1F2|

)
= 2

∑
ky 6=0

|β2|2|γ2|
(
1 + k2⊥ + |R2|2

)
+O(νk2⊥) , (36)

where the contributions ofO(νk2⊥) represent the terms proportional to 〈β∗1β2〉. From this expression,

we obtain

κ =
|β2(k)|2

|β1(k)|2
=
γ1

(
1 + |R1|2 + k2⊥ −

|CF12|
b|C1F2|

)
|γ2|

(
1 + |R2|2 + k2⊥

) +
O(νk2⊥)

|γ2|
(

1 + |R2|2 + k2⊥

) , (37)

where, in keeping with the strong localization of dominant energy transfer in the low wavenumber

range, we have replaced the sum with evaluation at a representative wavenumber.
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We now examine the order of the leading contribution to |Rj |2, which from Eq. (12) is

−ωj(1+k2⊥)/(2kyε) ∼ ∓
√

(1 + η)ε. Following Eq. (10) we compare the threshold dispersion relation

to the results of Ref. [29], which assumes a flat density limit Ln → ∞, and which was ordered as

(1 + η)ky ∼ O(1) and εky ∼ O(1). The more appropriate limit is for a modestly peaked density

profile with O(ε̂2) ≤ ε < O(1). Because R2|2 = |R1|2 +O(ν2k4⊥), Eq. (37) can then be written

κ =
γ1
|γ2|

(
1− |CF12|

b|R1|2|C1F2|

)
+
O(νk2⊥)

|γ2| |R1|2
, (38)

where for ε = O(ε̂2), this expression is valid to eighth order, and γ1/|γ2| differs from unity in the

sixth order.

The above analysis shows that equipartition of energy rates γj |βj |2 is followed to high order

in this system, with small deviations arising from the breaking of conjugate symmetry in γ1 and γ2

by finite collisionality. The result is that κ deviates from unity by a small increment of order νk2⊥.

With these results, we return to the heat flux in Eq. (22), and write it up to order νk2⊥ ∼ ε̂6,

yielding

Qi =
∑
k

γ1
2ε

(1 + k2⊥) |β1|2 (1− κ) . (39)

This equation provides three pieces of important information. First, the heat flux is proportional

to the growth rate of the instability, a standard result for drift-wave turbulence [34]. Second,

the heat flux is proportional to the turbulence level. While this is also standard, the turbulence

level is set by a saturation balance, which introduces dependencies on coupling coefficients and

the triplet correlation time, with their tendency for resonance in a wave regime at low k. These

dependencies are derived in the Sec. 5. The third important concept is that the heat flux is

proportional to 1 − κ, arising from Im(R1)|β2|2 + Im(R2)|β2|2. The high degree of conjugate

symmetry for weakly collisional regimes puts the stable-mode amplitude on par with that of the

unstable mode, significantly reducing the heat flux.

5 Nonlinear Saturation Relations

We turn now to the nonlinear physics that sets |β1|2. The level |β1|2 is governed by a saturation

energy balance that depends on the triplet correlation time τ of the fluctuation interaction that
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mediates saturation. The triplet correlation time of interest in the present, zonal-flow-mediated

case is essentially the reciprocal of the frequencies of the unstable mode, the zonal flow, and

the stable mode, each at a wavenumber of the triplet interaction k = k′ + k′′. More precisely

we write τ = −i[ωl(k′′) + ωm(k′) − ω∗n]−1, where l, m, and n respectively denote stable mode,

zonal flow, and unstable mode. These frequencies have linear and nonlinear components, with the

former given by Eq. (10). When the triplet correlation time is near resonance, the sum of the

linear frequencies nearly vanishes, and the nonlinear frequencies become important. Hence, we also

derive the nonlinear frequency, or eddy damping rate, as a function of turbulence levels. Both

of these relationships are obtained from statistical closure theory. The statistical closure theory

for Eqs. (17) and (18) was worked out in Ref. [12]. While that derivation was restricted to the

strong-transport regime, it used the form and symbols of Eqs. (17)–(21) — one only need supply

the correct threshold-model expressions for R1,2 from Eq. (12) and ω1,2 from Eq. (10).

Statistical closure treats the nonlinear terms of energy evolution equations. For the zonal

flow, the energy evolution equation is obtained from Eq. (18) and given by

|v̇z|2 + ν|vz|2 = 2Re
∑
k′

C
(k,k′)
Fmn

〈
β′′mβ

′
nv
∗
z

〉∣∣∣
ky=0

, (40)

where n and m can take the values of 1 or 2, and repetition of these indices in any single term

indicates a sum from 1 to 2. The triplet correlation 〈β′′mβ′nv∗z〉 governs nonlinear transfer, and it is

calculated from its evolution equation, which from Eqs. (17) and (18) is given by

[
d
dt + iω′′m + iω′n − iω∗1

]
〈β′′mβ′nv∗z〉

∣∣
ky=0

=

∑
k′′′x

{[
C

(k′′,k′′′)
mFl 〈v′′′z βl(k′′ − k′′′)β′nv∗z〉+ C

(k′,k′′′)
nF l 〈v′′′z βl(k′ − k′′′)β′′mv∗z〉

]∣∣∣
k′′′y =0

+

[
C

(k′′,k′′′)
mlF 〈β′′′l vz(k′′ − k′′′)β′nv∗z〉

∣∣∣
k′′′y =k′′y

+ C
(k′,k′′′)
nlF 〈β′′′l vz(k′ − k′′′)β′′mv∗z〉

∣∣∣
k′′′y =k′y

]}∣∣∣∣∣
ky=0

, (41)

where the nonlinearity that drives v∗z has been neglected because it is smaller by a factor of k2⊥

than the nonlinearities of the right-hand side that drive β′′m and β′n.

Equation (41) is inverted and substituted into Eq. (40). The fourth-order correlations of

Eq. (41) are written as products of two second-order correlations, i.e., 〈v′′′z βl(k′′ − k′′′)β′nv
∗
z〉 →
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〈β′∗l β′n〉|vz|2, 〈v′′′z βl(k′ − k′′′)β′′mv
∗
z〉 → 〈β′′∗l β′′m〉|vz|2, 〈β′′′l vz(k′′ − k′′′)β′nv

∗
z〉 → 〈β′∗l β′n〉|vz|2, and

〈β′′′l vz(k′ − k′′′)β′′mv
∗
z〉 → 〈β′′∗l β′′m〉|vz|2. Writing fourth-order correlations as products of second-

order correlations assumes turbulence with a probability distribution function that is close to a

Gaussian, which is valid for a randomized system, in which case the sum over k′′′x is dominated by

k′′′x = kx in the first and second terms on the right-hand side of Eq. (41), by k′′′x = k′′x − kx in the

third, and by k′′′x = k′x − kx in the fourth.

The interaction of β′′m, β′n, and v∗z has a finite correlation time governed by the frequency

mismatch iω′′m + iω′n − iω∗1. In a steady state, 〈β′′mβ′nv∗z〉 is given by the right-hand side of Eq. (41)

divided by iω′′m+ iω′n− iω∗1. This means that 〈β′′mβ′nv∗z〉 tends to be dominated by mode interactions

for which iω′′m+iω′n−iω∗1 is minimal. Moreover, such interactions result in lower values of fluctuation

levels for a given linear drive. Physically, iω′′m + iω′n− iω∗1 is the reciprocal of the triplet correlation

time; when this time is large, energy transfer is more efficient, and the system saturates at lower

turbulent amplitudes.

Consider couplings that make iω′′m+ iω′n− iω∗1 minimal. By assignment, k is the wavenumber

of the zonal flow, which we assume is a zero-frequency fluctuation with damping that is very small

(ν � 1). Then, if m = 1, a minimum occurs for n = 2, i.e., |iω′′1 + iω′2 − iω∗1| � |iω′′1 + iω′1 − iω∗1|.

Similarly, for m = 2, a minimum occurs for n = 1, and |iω′′2 + iω′1 − iω∗1| � |iω′′2 + iω′2 − iω∗1|.

This property follows from the near-conjugate symmetry of the unstable and stable modes. It also

validates the assertion made in Sec. 1 that the nonlinear coupling is dominated by the interaction

of the unstable mode, the zonal flow, and the stable mode. It is worth noting that if ν = k2⊥ = 0,

|iω′′1 + iω′2− iω∗1| and |iω′′2 + iω′1− iω∗1| exactly vanish. This makes nonlinear frequencies important

even in a weak-turbulence regime where the nonlinear frequency at a single k is small compared

to its linear counterpart. Restricting three-wave coupling to the interaction of the unstable mode,
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zonal flow, and stable mode, the closed equation for |vz|2 is given by

[
∂
∂t + 2ν

]
|vz|2

∣∣
ky=0

=
∑

k′ 2Re

{
C

(k,k′)
F12 (iω′2 + iω′′1 − iω∗1)−1|vz|2

[(
C

(k′,−k′′)
22F + C

(k′,k)
2F2

)
〈β′′1β′′∗2 〉

+
(
C

(k′′,k)
1F1 + C

(k′′,−k′)
11F

)
〈β′∗1 β′2〉+

(
C

(k′′,k)
1F2 + C

(k′′,−k′)
12F

)
|β′2|2 +

(
C

(k′,−k′′)
21F + C

(k′,k)
2F1

)
|β′′1 |2

]

+ C
(k,k′)
F21 (iω′′2 + iω′1 − iω∗1)−1|vz|2

[(
C

(k′,−k′′)
21F + C

(k′,k)
1F1

)
〈β′′∗1 β′′2 〉+

(
C

(k′,−k′′)
12F + C

(k′,k)
1F2

)
|β′′2 |2

+
(
C

(k′′,k)
2F1 + C

(k′′,−k′)
21F

)
|β′1|2 +

(
C

(k′′,k)
2F2 + C

(k′′,−k′)
22F

)
〈β′1β′∗2 〉

]}∣∣∣∣∣
ky=0

. (42)

Here, the notion of steady state that allows inversion of Eq. (41) with (iω′2 + iω′′1 − iω∗l )−1 is, in

fact, the Markovian assumption of the eddy-damped-quasi-normal-Markovian closure, commonly

referred to as EDQNM [35], valid when the time scales of fluctuation correlations is slower than

(iω′2 + iω′′1 − iω∗1)−1. In Sec. 6, we will solve this equation to obtain the saturated level of |β1|2

pursuant to an analytic expression for the heat flux.

As constructed in Eq. (41), the triplet correlation times (iω′2 + iω′′1 − iω∗1)−1 and (iω′′2 + iω′1−

iω∗1)−1 are made up of linear frequencies. However, in turbulent systems, any linear frequency has

a nonlinear counterpart that describes the effect of nonlinear scattering on wave properties. These

nonlinear frequencies are often referred to as eddy damping, because they lead to decorrelation

at an amplitude-dependent rate. In turbulence with wave motion, these frequencies are complex,

just like linear frequencies. As shown in Ref. [36], eddy damping arises from nonlinear interactions

that are separate from those that converted the fourth-order correlations of Eq. (41) to products

of second-order correlations, and the eddy damping can be formulated from those interactions [36].

We derive the complex eddy damping rate that renormalizes the linear frequency ωl. Starting

from Eq. (17), we observe that the nonlinearity involves products v′zβ
′′
j and β′jv

′′
z . Such products

themselves satisfy a nonlinear evolution equation, which for v′zβ
′′
j is constructed from Eqs. (17) and

(18) and given by[
d
dt + iω′′j + iω′1

]
β′′j v

′
z

∣∣∣
k′y=0

=
∑

k′′′x

{
C

(k′′,k′′′)
jF l v′′′z βl(k

′′ − k′′′)v′z
∣∣∣
k′′′y ,k

′
y=0

+ C
(k′′,k′′′)
jlF vz(k

′′ − k′′′)β′′′l v′z
∣∣∣
k′′′y =k′′y ,k

′
y=0

+ C
(k′,k′′′)
Fml β′′′mβl(k

′ − k′′′)β′′j
∣∣∣
k′y=0

}
. (43)
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To find contributions to the eddy-damping counterpart of ωl from the sum over k′′′x , we select

wavenumbers that give the right-hand side of Eq. (43) the same phase as βl. For the first term

of the right-hand side of Eq. (43) this is accomplished with k′′′x = −k′x, for the second term with

k′′′x = 0, and for the third term with k′′′x = kx and k′′′x = k′x − kx. Consequently, in steady state,

Eq. (43) becomes

v′zβ
′′
j

∣∣
k′y=0

=
1

i(ω′′j + ω′1)

{(
C

(k′′,−k′)
jF l + C

(k′′,k)
jlF

)
|v′z|2

+
∑
m

[
C

(k′,k)
Flm β′′∗m β

′′
j + C

(k′,−k′′)
Fml β′′∗m β

′′
j

]}∣∣∣∣∣
k′y=0

βl . (44)

We observe that, although the right-hand side of Eq. (44) is nonlinear, its phase is that of β1,

because |v′z|2 and β′′∗m β
′′
j have zero phase for m = j, and for m 6= j the phase is very small as seen

from Eq. (31). Applying the procedure that produced Eq. (44) to β′jv
′′
z , we obtain

v′′zβ
′′
j

∣∣
k′y=ky

=
1

i(ω′j + ω′′1)

{(
C

(k′,−k′′)
jF l + C

(k′,k)
jlF

)
|v′′z |2

+
∑
m

[
C

(k′′,k)
Flm β′∗mβ

′
j + C

(k′′,−k′)
Fml β′∗mβ

′
j

]}∣∣∣∣∣
k′y=ky

βl . (45)

When these two expressions are substituted into Eq. (17) the factors multiplying βl combine to

produce a eddy turnover rate given by

∆ωl = 2
∑
k′x

C
(k,k′)
lF j

i(ω̂′′j + ω̂′1)

[(
C

(k′′,−k′)
jF l + C

(k′′,k)
jlF

)
|v′z|2 +

(
C

(k′,k)
Flm + C

(k′,−k′′)
Fml

)
β′′∗m β

′′
j

]
, (46)

where the full frequency of βl is written iω̂l = iωl −∆ωl, and we note that the frequencies inside

∆ωl are themselves renormalized by eddy damping rates. The latter renormalization guarantees

that ω̂l has low and high transport regimes, consistent with the observations depicted in Fig. 9 of

Ref. [37].

While the eddy damping rate must have dimensions of the reciprocal of time and depend on

amplitude, there is some ambiguity regarding the form of the nonlinear damping time [i(ω̂′j+ω̂′′1)]−1

in Eq. (46). For example, in Ref. [36] this time is the same as the nonlinear time that governs

the three-wave interactions of the energy evolution equations. This puts three frequencies in the

nonlinear damping time of ∆ωl as given in Eq. (2) of Ref. [10]. As derived here, ∆ωl is the scattering
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rate associated with the frequency of a single-mode, three of which then enter the triplet correlation

time. The single mode damping time has been measured in simulation and compared with analytic

forms [37].

6 Heat Flux Solutions

To evaluate the nonlinear expression for heat flux in Eq. (22) we solve the zonal energy balance

Eq. (42) for |β1|2, first simplifying its form. Consider the four terms of Eq. (42) whose spectral

correlations are functions of k′′. We exchange the wavenumbers k′ and k′′, which are assigned

arbitrarily in the convolution generated by the Fourier transform of the nonlinearity. With the

exception of the factors C
(k,k′′)
F12 and C

(k,k′′)
F21 , this operation maps terms of Eq. (42) whose spectral

correlations are functions of k′′ into the terms whose spectral correlations are functions of k′. We

then note that for ky = 0, we have C
(k,k′′)
F12 = C

(k,k′)
F21 = C

(k,k′)
F12 = C

(k,k′′)
F21 , a property that can be

readily verified from Eq. (21). Consequently, Eq. (42) becomes[
∂

∂t
+ 2ν

]
|vz|2

∣∣∣∣
ky=0

= 4
∑
k′

Re

{
C

(k,k′′)
F12 τ12F

[(
C

(k′′,k)
1F1 + C

(k′′,−k′)
11F

)
〈β′∗1 β′2〉

+
(
C

(k′′,k)
1F2 + C

(k′′,−k′)
12F

) ∣∣β′2∣∣2 ]+ C
(k,k′′)
F21 τ21F

[(
C

(k′′,k)
2F2 + C

(k′′,−k′)
22F

)
× 〈β′1β′∗2 〉+

(
C

(k′′,k)
2F1 + C

(k′′,−k′)
21F

) ∣∣β′1∣∣2]
}
|vz|2

∣∣∣∣∣
ky=0

, (47)

where τ21F = (iω̂′′2 + iω̂′1 − iω̂∗1)−1 and τ12F = (iω̂′′1 + iω̂′2 − iω̂∗1)−1 are the triplet correlation

times for the zonal-flow-catalyzed triplet interaction. Defining amalgamated coefficients C ′′mn =

C
(k′′,k)
mFn + C

(k′′,−k′)
mnF , the spectral balance acquires the succinct form[
∂

∂t
+ 2ν

]
|vz|2

∣∣∣∣
ky=0

= 4
∑
k′

Re

{[
C

(k,k′′)
F12 τ12F

(
C ′′11〈β′∗1 β′2〉+ C ′′12

∣∣β′2∣∣2)
+ C

(k,k′′)
F21 τ21F

(
C ′′22〈β′1β′∗2 〉+ C ′′21

∣∣β′1∣∣2)] |vz|2
}
ky=0

. (48)

We use β2 =
√
κ exp(iθ)β1 to write |β′2|2, 〈β′∗1 β′2〉, and 〈β′1β′∗2 〉 in terms of |β′1|2. Assuming a steady

state (∂/∂t→ 0), the zonal energy cancels from the balance, leaving

ν = 2
∑
k′

Re
[
C

(k,k′′)
F12 τ12F

(
C ′′11e

iθ + C ′′12κ
)

+ C
(k,k′′)
F21 τ21F

(
C ′′22e

−iθ + C ′′21

)] ∣∣β′1∣∣2
∣∣∣∣∣
ky=0

. (49)
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Equation (49) is a rigorous version of the approximate saturation-level expression given by Eq. (31)

of Ref. [12]. Both expressions have the same scalings with ν, CF12, τijF , CiF j and CijF , but Eq. (49)

also accounts for |β′2|2, 〈β′∗1 β′2〉, and 〈β′1β′∗2 〉, whose values are known up to O(ε̂8) in the expansion

for small k and ν.

In Eq. (49), |β′1|2 is part of a sum. Numerical solutions show that the coupling coefficients

and τ factors vary slowly relative to |β′1|2, which because of energy removal by stable modes drops

sharply over the unstable wavenumber range. The coupling coefficients and τ factors can then be

extracted from the sum (a Markovian approximation) leaving a sum over |β′1|2, which produces a

spectrum-averaged value over the unstable wavenumber range. With |β′1|2 understood to be this

average, Eq. (49) can be expressed as

∣∣β′1∣∣2 ∼ ν∑
kx

Re
{
C

(k,k′′)
F12 [τ21F (C ′′21 +

√
κC ′′22e

−iθ) + τ12F (κC ′′12 +
√
κC ′′11e

iθ)]
} , (50)

where a sum over kx is introduced to incorporate contributions from different zonal-flow wavenum-

bers. Note that in Ref. [10], the summation in Eq. (49) was approximated less consistently with

spectrum features. However, because of the strong localization of fluctuation energy to the unstable

wavenumber range, overall results are insensitive to these differences.

Equation (50) represents key aspects of ITG turbulence saturation. The factor ν in the

numerator is the damping rate of the zonal flow. Larger zonal-flow damping requires stronger

nonlinear energy transfer to the zonal flow to maintain the quasi-stationary state, leading to a

higher turbulence level. The combination of the coupling coefficients and triplet correlation time

in the denominator originates from the nonlinear energy transfer, which is proportional to the

turbulence level. Larger values of the coupling coefficients and triplet correlation time produce

more efficient nonlinear energy transfer and therefore lead to lower turbulence levels.

With |β1|2 given by Eq. (50), the heat flux as per Eq. (39) becomes

Qi =
∑
k′′′

γ(k′′′)(1 + k′′′2⊥ )ν(1− κ)

4ε
∑

kx
(k′2⊥ − k′′2⊥ )Re

{
ik′y [τ21F (C ′′21 + C ′′22

√
κe−iθ) + τ12F (C ′′12κ+ C ′′11

√
κeiθ)]

} , (51)

where C
(k,k′′)
F12 is written explicitly using Eq. (21), thereby exposing a factor (k′2⊥ − k′′2⊥ ) in the

denominator of Eq. (51). The combination of factors γ(k′′′)/(k′2⊥ − k′′2⊥ ) scales like the quasilinear
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heat flux. The remaining factors constitute a nonlinear correction to quasilinear scaling. Critical

nonlinear corrections include the triplet correlation times τ21F and τ12F , the coupling coefficients

C ′′ij , and the parameters κ and θ from the contributions of |β2|2 and 〈β∗1β2〉. The factor 1 − κ

accounts for the up-gradient flux of the stable mode, in opposition to the down-gradient flux of the

unstable mode. From Eq. (51), the heat flux is proportional to the zonal flow damping rate to a

power 2 (since τijF ∝ ν−1). The fact that the shearing paradigm of zonal-flow regulation [27] is

also understood to produce a heat flux proportional to a positive power of ν [40] is coincidental.

The latter requires a shearing rate that exceeds the nonlinear decorrelation rate by a sizable factor

( 10 when zonal flow fluctuate), enhancing energy transfer to small scale turbulent fluctuations by

boosting the turbulent decorrelation rate to the shearing level [2]. In zonal flow catalyzed transfer,

straining by the zonal flow (the threshold-less shearing process of ordinary mode coupling) enhances

transfer to large scale turbulent fluctuations by reducing the decorrelation rate to its smallest

possible value.

Fig. 6 shows the heat flux and growth rate as functions of the temperature-gradient parameter

η. The heat flux is calculated from a numerical solution of Eqs. (8) and (9) in conjunction with the

analytic formula of Eq. (51) for a case with parameters ε = 1.25, ν = 0.001, and χ = 0. Simulations

were performed on a grid of 2048× 1024 points in (kx, ky), with kx,min = 0.0125 and ky,min = 0.025

in order to capture turbulent behavior for large η. A fourth order Runge-Kutta scheme was utilized.

As for the heat flux evaluation from the analytic formula Eq. (51), kx and k′′′y are summed over

values from −0.25 to −0.15 and 0.25 to 0.4, respectively. The triplet correlation times τ21F and

τ12F are evaluated with the linear frequencies only, i.e., the eddy-damping decrements ∆ωj were

neglected. According to Eq. (37), κ ∼ 1− νk2⊥/γ2 for k⊥ and ν small, making 1− κ of order 10−4

in the low-k regime for η away from the linear threshold ηcrit. In Fig. 6, the value κ = 1− 10−4 for

higher η was assumed to represent η near threshold.

For comparison purposes, the scales of analytic and simulated heat fluxes in Fig. 6 are adjusted

so that the two curves coincide at the highest value of η. We observe that both fluxes have positive

curvature, in contrast to the negative curvature of the growth rate, giving a region above the
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Figure 6: Growth rate at k = (0, 0.25) (magenta), analytic heat flux (blue) and simulated heat flux
(black) as a functions of η for ε = 1.25, ν = 0.001 and χ = 0. Eddy damping is neglected in the
triplet correlation time factors of the analytic formula. The heat flux predicted from the analytic
formula showing unphysical behavior close to the linear threshold.

Figure 7: Triplet correlation time (blue) and coupling coefficient C1F2 (red) as a function of η for
the same parameters as Fig. 6. Eddy damping is neglected in |τ |. The triplet correlation time
increases dramatically just above the linear threshold, which leads to the spike of the heat flux in
close-threshold region.
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threshold where heat flux increases slowly before turning up more sharply. The analytic flux has an

unphysical spike just above the threshold which artificially raises its value relative to the simulated

flux. This spike arises from a prompt increase of τ above the threshold followed by a slow slide off

at higher η, as shown in the blue trace of Fig. 7. This behavior is unphysical because increasing η,

which increases the dispersive components of frequencies and growth rates, necessarily decreases τ

immediately above threshold. The source of the unphysical increase of τ is traced to the fact that

the k dependence of the threshold puts multiple thresholds into τ from its frequencies at different

wavenumber. This creates the spike region near the threshold in which the crossing of the identities

of stable and unstable produce an increase in τ .

This sensitivity to a two-mode representation of the eigenmode space can be expected to

be smoothed by eddy damping. This nonlinear frequency-broadening process is important near

threshold, where resonance makes ω′′2 +ω′1−ω∗1 much smaller than individual frequencies, bringing

eddy damping into prominence even in the low-amplitude threshold regime. Moreover, Eq. (46)

shows that the dominant component of the eddy damping ∆ω is proportional to the product of |vz|2

and CjF lCjlF . The coefficient C1F2 is plotted in Fig. 7 as the red line, where it is seen that C1F2 is

largest near the threshold. This behavior arises from the form C1F2 ∝ [Re(ω) + iγ]/γ, which makes

C1F2 strongest just above the threshold where Re(ω) � γ and CiF j ∝ Re(ω)/γ � 1. At large η,

the coupling coefficient C1F2 asymptotes to a smaller constant. The importance of eddy damping

near resonance is amplified near threshold by this effect and therefore should not be ignored.

Fig. 8 shows that by adding the eddy damping rate ∆ω of Eq. (46) to the τ factors of

Eq. (51), the countering trends of τ in Fig. 6 are removed, thereby smoothing the unphysical

behavior of Qi around the instability threshold. The predicted heat flux now agrees much better

with the simulation starting from the linear threshold. In Fig. 9, the triplet correlation time with

eddy damping included is plotted as a function of η, showing that the triplet correlation time

decreases monotonically with η, as expected for nearly resonant frequencies that increase with η.

This behavior represents a resonance in the standard sense of turbulent mode-coupling interactions.

We note that the decrease of coupling coefficient with η, shown in Fig. 9 for comparison, is also
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Figure 8: Growth rate (magenta), analytic heat flux (blue), and simulated heat flux (black) as
functions of η for ε = 1.25, ν = 0.001, and χ = 0, with eddy damping included in the analytic
formula.

pronounced, significantly contributing to the suppression of the heat flux immediately above the

threshold. This effect can also be termed as resonant because it arises from the dependence of C1F2

on mode frequency, describing an enhancement of zonal-flow-mediated coupling between stable and

unstable modes just above threshold.

The behavior depicted in Fig. 9 is broadly consistent with critical features of the Dimits

shift. No bifurcation is observed, but rather a continuously increasing slope from a region near the

instability threshold with very low flux. The match of the analytic flux with the simulated flux

is not perfect, but the former generally tracks the variation of the latter. Both differ decidedly

from the variation of the growth rate with η. The features evident in Fig. 9 are replicated for

other parameter values. Figure 10 shows the heat flux versus η for ε = 1.25 and ε = 0.625. As

the magnetic curvature parameter, the threshold depends on ε. In Fig. 10, the simulated heat flux

is actually larger than the analytic flux near the threshold for ε = 0.625, and it is clearly evident

that while there is noticeable upturn in slope of simulated heat flux at η = 8, the flux below that

value is not zero. Variations with collisionality, which produce consistent effects in gyrokinetics

and the present fluid model, will be described in a separate gyrokinetic study, along with other
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Figure 9: Triplet correlation time (blue) and coupling coefficient C1F2 (red) as a function of η
for the same parameters as Fig. 4 with eddy damping included in τ . The triplet correlation time
decreases monotonically as η increases, which eliminates the unphysical behavior.

Figure 10: Heat flux as a function of η for ε = 0.625 and ε = 1.25 analytic theory (triangles and
circles), numerical solution (inverted triangles and crosses).
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tests that directly broaden the resonance in the triplet correlation time. These modifications result

in a increase in the heat flux and generally support the conclusion that resonance is an important

aspect of the critical gradient upshift. The idea of resonant interactions has been used to modify

quasilinear modeling, which in standard formulations does not capture the resonant aspects of

saturation. The result is an improved quasilinear model that is able to capture the critical gradient

upshift in gyrokinetic simulations [39].

7 Conclusions

Physics central to the Dimits shift, a phenomenon where the ion heat flux becomes significant only

at a larger temperature gradient than the critical gradient of linear instability, has been analyzed

with approaches based on gyrokinetic simulation and fluid-model analytic theory. The simulations

show that fluctuations and transport are not zero between the linear instability threshold and the

nonlinear critical gradient (NLCG) where the flux rises sharply. Accordingly, turbulent transfer was

investigated in the regimes of low and high transport on either side of the NLCG. Instantaneous

nonlinear spectral energy transfer and scale-to-scale-cascaded energy transfer were found to be

similar in both regimes, differing essentially in magnitude only. Energy transfer is governed by

zonal-flow-catalyzed mode coupling — the interaction between the unstable mode, a stable mode,

and the zonal flow at a triplet of wavenumbers.

A saturation theory based on this interaction was extended from the strong-transport regime

for which it was originally developed to the weak-transport regime near the linear threshold by

building the kinetic threshold of the ITG instability into the fluid model. The dominant mode

coupling is resonant for k2⊥, ν → 0, i.e., the frequency mismatch of the triplet correlation time is

zero because the stable mode forms a conjugate pair with the unstable mode and the zonal flow

is a zero-frequency mode. This allows maximally efficient transfer to the stable-mode energy sink,

yielding negligibly low levels of fluctuations and transport for a given instability growth rate. The

resonance is broadened by finite ν, k2⊥, and eddy damping, producing a small heat flux near the

instability threshold. The minimum value of the triplet correlation time produced by the broadening
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grows with temperature gradient, allowing the flux to become significant after a gradient range of

latency set by the broadening.

Adequate description of this physics requires accounting for nonlinear transfer between eigen-

modes, with the heat flux depending on the eigenmode auto and cross correlations |β1|2, |β2|2 and

〈β∗1β2〉. Expressions were derived for the relationship between these correlations. Because of the

near conjugate symmetry in the regime k2⊥, ν � 1, these relationships are dominated by linear

physics in steady state. The contribution of |β2|2 to transport is significant and nearly cancels the

quasilinear contribution from |β1|2, while 〈β∗1β2〉 makes a negligible contribution. The level of |β2|2

is set by equipartition of energy injection and removal rates γ1|β1|2 and γ2|β2|2.

The nonlinear balance for zonal-flow energy determines |β1|2 since the zonal energy drops

out for zonal-flow-catalyzed mode coupling. This balance was solved inclusive of all eigenmode

correlations by Markovianizing its nonlinear convolution and summing over wavenumber. The flux

and |β1|2 are proportional to ν, the inverse of the triplet correlation time, and the inverse of a

product of coupling coefficients. The eigenmode-frequency dependence of one of these coefficients

gives it resonant behavior, i.e., it decreases sharply above the linear instability threshold. The

heat-flux dependence on the nearly resonant triplet correlation time also explains to a substantial

degree the nonlinear finite-β stabilization of ITG turbulence.

This theory does not account for all processes that may have bearing on the critical-gradient

upshift. Turbulent fluctuations are intermittent just above the linear-instability threshold due

to the relative paucity of mode coupling interactions available under the vanishing growth rate

and instability range. Intermittency challenges the assumptions of closure calculations, although

the one used here explicitly accounts for the weak-turbulence limit by retaining the resonance of

three-wave interactions. This theory accounts only for the zonal-flow-catalyzed interaction. Well

above the linear critical gradient, other nonzonal mode mode-coupling interactions may eventually

become prominent. This theory does not apply when such interactions are dominant. Strongly

ballooning modes in the ballooning representation of toroidal geometry are also assumed, limiting

consideration of nonlinear eigenmode structure evolution not amenable to spectral representation.
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Non-adiabatic electrons have been omitted in keeping with the simplest realization of ITG physics.

Non-adiabatic electrons are related to trapped electron mode (TEM) physics, where a critical

gradient upshift has been noted in the density-gradient driven case [41]. Improvements of earlier

work [42] on stable modes and zonal flows in TEM turbulence are under development and will be

reported elsewhere. Mean flow shear has also been neglected. Its inclusion could be of interest for

studying the interaction of the distinct processes of shear suppression by an externally maintained

shear flow and saturation by zonal-flow-catalyzed transfer.
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