29 research outputs found

    Necroptotic Cell Death Promotes Adaptive Immunity Against Colonizing Pneumococci

    Get PDF
    Pore-forming toxin (PFT) induced necroptosis exacerbates pulmonary injury during bacterial pneumonia. However, its role during asymptomatic nasopharyngeal colonization and toward the development of protective immunity was unknown. Using a mouse model of Streptococcus pneumoniae (Spn) asymptomatic colonization, we determined that nasopharyngeal epithelial cells (nEC) died of pneumolysin (Ply)-dependent necroptosis. Mice deficient in MLKL, the necroptosis effector, or challenged with Ply-deficient Spn showed less nEC sloughing, increased neutrophil infiltration, and altered IL-1α, IL-33, CXCL2, IL-17, and IL-6 levels in nasal lavage fluid (NALF). Activated MLKL correlated with increased presence of CD11c+ antigen presenting cells in Spn-associated submucosa. Colonized MLKL KO mice and wildtype mice colonized with Ply-deficient Spn produced less antibody against the bacterial surface protein PspA, were delayed in bacterial clearance, and were more susceptible to a lethal secondary Spn challenge. We conclude that PFT-induced necroptosis is instrumental in the natural development of protective immunity against opportunistic PFT-producing bacterial pathogens

    The Meningococcal Minor Pilin PilX Is Responsible for Type IV Pilus Conformational Changes Associated with Signaling to Endothelial Cells

    No full text
    International audienceNeisseria meningitidis crosses the blood-brain barrier (BBB) following the activation of the ␀2-adrenergic receptor by the type IV pili (TFP). Two components of the type IV pili recruit the ␀2-adrenergic receptor, the major pilin PilE and the minor pilin PilV. Here, we report that a strain deleted of PilX, one of the three minor pilins, is defective in endothelial cell signaling. The signaling role of PilX was abolished when pili were not retractable. Purified PilX was unable to recruit the ␀2-adrenergic receptor, thus suggesting that PilX was playing an indirect role in endothelial cell signaling. Considering the recent finding that type IV pili can transition into a new conformation (N. Biais, D. L. Higashi, J. Brujic, M. So, and M. P. Sheetz, Proc. Natl. Acad. Sci. U. S. A. 107:11358-11363, 2010), we hypothesized that PilX was responsible for a structural modification of the fiber and allowed hidden epitopes to be exposed. To confirm this hypothesis, we showed that a monoclonal antibody which recognizes a linear epitope of PilE bound fibers only when bacteria adhered to endothelial cells. On the other hand, this effect was not observed in PilX-deleted pili. A deletion of a region of PilX exposed on the surface of the fiber had phenotypical consequences identical to those of a PilX deletion. These data support a model in which surface-exposed motifs of PilX use forces generated by pilus retraction to promote conformational changes required for TFP-mediated signaling

    The Hypervariable Region of Meningococcal Major Pilin PilE Controls the Host Cell Response via Antigenic Variation

    No full text
    International audienceType IV pili (Tfp) are expressed by many Gram-negative bacteria to promote aggregation, adhesion, internalization, twitching motility, or natural transformation. Tfp of Neisseria meningitidis, the causative agent of cerebrospinal meningitis, are involved in the colonization of human nasopharynx. After invasion of the bloodstream, Tfp allow adhesion of N. meningitidis to human endothelial cells, which leads to the opening of the blood-brain barrier and meningitis. To achieve firm adhesion, N. meningitidis induces a host cell response that results in elongation of microvilli surrounding the meningococcal colony. Here we study the role of the major pilin subunit PilE during host cell response using human dermal microvascular endothelial cells and the pharynx carcinoma-derived FaDu epithelial cell line. We first show that some PilE variants are unable to induce a host cell response. By engineering PilE mutants, we observed that the PilE C-terminus domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and that hypervariable regions confer different host cell specificities. Moreover, the study of point mutants of the pilin D-region combined with structural modeling of PilE revealed that the D-region contains two independent regions involved in signaling to human dermal microvascular endothelial cells (HDMECs) or FaDu cells. Our results indicate that the diversity of the PilE D-region sequence allows the induction of the host cell response via several receptors. This suggests that Neisseria meningitidis has evolved a powerful tool to adapt easily to many niches by modifying its ability to interact with host cells. IMPORTANCE Type IV pili (Tfp) are long appendages expressed by many Gram-negative bacteria, including Neisseria meningitidis, the causative agent of cerebrospinal meningitis. These pili are involved in many aspects of pathogenesis: natural competence, aggregation, adhesion, and twitching motility. More specifically, Neisseria meningitidis, which is devoid of a secretion system to manipulate its host, has evolved its Tfp to signal to brain endothelial cells and open the blood-brain barrier. In this report, we investigate, at the molecular level, the involvement of the major pilin subunit PilE in host cell response. Our results indicate that the PilE C-terminal domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and contains two independent regions involved in host cell signaling

    Severity and properties of cardiac damage caused by Streptococcus pneumoniae are strain dependent.

    No full text
    Streptococcus pneumoniae is an opportunistic Gram-positive pathogen that can cause invasive disease. Recent studies have shown that S. pneumoniae is able to invade the myocardium and kill cardiomyocytes, with one-in-five adults hospitalized for pneumococcal pneumonia having a pneumonia-associated adverse cardiac event. Furthermore, clinical reports have shown up to a 10-year increased risk of adverse cardiac events in patients formerly hospitalized for pneumococcal bacteremia. In this study, we investigated the ability of nine S. pneumoniae clinical isolates, representing eight unique serotypes, to cause cardiac damage in a mouse model of invasive disease. Following intraperitoneal challenge of C57BL/6 mice, four of these strains (D39, WU2, TIGR4, and 6A-10) caused high-grade bacteremia, while CDC7F:2617-97 and AMQ16 caused mid- and low-grade bacteremia, respectively. Three strains did not cause any discernible disease. Of note, only the strains capable of high-grade bacteremia caused cardiac damage, as inferred by serum levels of cardiac troponin-I. This link between bacteremia and heart damage was further corroborated by Hematoxylin & Eosin and Trichrome staining which showed cardiac cytotoxicity only in D39, WU2, TIGR4, and 6A-10 infected mice. Finally, hearts infected with these strains showed varying histopathological characteristics, such as differential lesion formation and myocytolysis, suggesting that the mechanism of heart damage varied between strains

    A virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation.

    No full text
    Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΊ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i) form bundles of filaments, and/or (ii) are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΊ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases

    Multiple Rescue Factors Within a Wolbachia Strain

    No full text
    Wolbachia-induced cytoplasmic incompatibility (CI) is expressed when infected males are crossed with either uninfected females or females infected with Wolbachia of different CI specificity. In diploid insects, CI results in embryonic mortality, apparently due to the the loss of the paternal set of chromosomes, usually during the first mitotic division. The molecular basis of CI has not been determined yet; however, several lines of evidence suggest that Wolbachia exhibits two distinct sex-dependent functions: in males, Wolbachia somehow “imprints” the paternal chromosomes during spermatogenesis (mod function), whereas in females, the presence of the same Wolbachia strain(s) is able to restore embryonic viability (resc function). On the basis of the ability of Wolbachia to induce the modification and/or rescue functions in a given host, each bacterial strain can be classified as belonging in one of the four following categories: mod+ resc+, mod− resc+, mod− resc−, and mod+ resc−. A so-called “suicide” mod+ resc− strain has not been found in nature yet. Here, a combination of embryonic cytoplasmic injections and introgression experiments was used to transfer nine evolutionary, distantly related Wolbachia strains (wYak, wTei, wSan, wRi, wMel, wHa, wAu, wNo, and wMa) into the same host background, that of Drosophila simulans (STCP strain), a highly permissive host for CI expression. We initially characterized the modification and rescue properties of the Wolbachia strains wYak, wTei, and wSan, naturally present in the yakuba complex, upon their transfer into D. simulans. Confocal microscopy and multilocus sequencing typing (MLST) analysis were also employed for the evaluation of the CI properties. We also tested the compatibility relationships of wYak, wTei, and wSan with all other Wolbachia infections. So far, the cytoplasmic incompatibility properties of different Wolbachia variants are explained assuming a single pair of modification and rescue factors specific to each variant. This study shows that a given Wolbachia variant can possess multiple rescue determinants corresponding to different CI systems. In addition, our results: (a) suggest that wTei appears to behave in D. simulans as a suicide mod+ resc− strain, (b) unravel unique CI properties, and (c) provide a framework to understand the diversity and the evolution of new CI-compatibility types

    Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella

    No full text
    Intracellular multiplication and dissemination of the infectious bacterial pathogen Francisella tularensis implies the utilization of multiple host-derived nutrients. Here, we demonstrate that gluconeogenesis constitutes an essential metabolic pathway in Francisella pathogenesis. Indeed, inactivation of gene glpX, encoding the unique fructose 1,6-bisphosphatase of Francisella, severely impaired bacterial intracellular multiplication when cells were supplemented by gluconeogenic substrates such as glycerol or pyruvate. The glpX mutant also showed a severe virulence defect in the mouse model, confirming the importance of this pathway during the in vivo life cycle of the pathogen. Isotopic profiling revealed the major role of the Embden-Meyerhof (glycolysis) pathway in glucose catabolism in Francisella and confirmed the importance of glpX in gluconeogenesis. Altogether, the data presented suggest that gluconeogenesis allows Francisella to cope with the limiting glucose availability it encounters during its infectious cycle by relying on host amino acids. Hence, targeting the gluconeogenic pathway might constitute an interesting therapeutic approach against this pathogen

    The c‐di‐AMP ‐binding protein CbpB modulates the level of ppGpp alarmone in Streptococcus agalactiae

    No full text
    International audienceCyclic di-AMP is an essential signaling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase

    Colonization of cells by the wild type and prophage deleted strains.

    No full text
    <p>Quantification of the biomass on living and paraformaldehyde treated epithelial cells (FaDu). Three-dimensional reconstruction of the biomass in (A) with the Imaris software. (1) Z5463<i>gfp</i> (WT strain) on FaDu, (2) Z5463<i>gfp</i>ΔMDA on FaDu, (3) Z5463<i>gfp</i> (WT strain) on fixed FaDu, (4) Z5463<i>gfp</i>ΔMDA on fixed FaDu. Bacteria are shown in green and epithelial cells in red. Quantification of the biomass on living and paraformaldehyde treated endothelial cells (HDMEC). Three-dimensional reconstruction of the biomass in (C) with the Imaris software. (1) Z5463<i>gfp</i> (WT strain) on HDMEC, (2) Z5463<i>gfp</i>ΔMDA on HDMEC, (3) Z5463<i>gfp</i> (WT strain) on fixed HDMEC, (4) Z5463<i>gfp</i>ΔMDA on fixed HDMEC. Bacteria are shown in green and epithelial cells in red. Wild-type (Z5463<i>gfp</i>) and Z5463<i>gfp</i>ΔMDA strains were grown onto cell monolayers for 18 hours under constant flow. The biomass was quantified using the COMSTAT software. At least three independent experiments were performed. The results are normalized as the percentage of the mean of the biomass of the wild-type strain on living cells, which was set to 100%. Error bars indicate the standard errors of the mean (SEM). **<i>p</i> < 0.001, *<i>p</i> < 0.05 (Student t test), NS: not significant <i>p</i> value.</p
    corecore