181 research outputs found

    CADUCEUS, SCIPIO, ALCADIA: Cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving.

    Get PDF
    The early results of the CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction study were recently published in the Lancet [1]. This study is a phase 1 prospective randomised study, performed at two centres. The study was designed to test the hypothesis that intracoronary infusion of autologous cardiac-derived cells following myocardial infarction can reduce the size of the infarct and increase the amount of viable myocardium. The eligible patients were randomised in a 2:1 ratio to receive CDCs or standard care. In all, 17 patients were randomised to cell therapy and 8 to standard care. The cell therapy consisted of an infusion of 25 million cells into the infarct related artery, 1.5–3 months after successful primary angioplasty in patients who developed LV dysfunction (EF less than 37 per cent). The cells were derived from RV endomyocardial biopsies performed within the previous 37 days. The number of cells was determined from previous experimental studies of the maximum number of cells which can be injected without inducing infarction. The study was not blinded because of ethical considerations regarding performing right ventricular biopsy on the controls. The exclusion criteria included patients who had evidence of right ventricular infarction, or could not have an MRI examination because of claustrophobia or prior insertion of devices. There was no death, myocardial infarction or serious arrhythmia reported in either group during the period of follow up, which was between 6-12 months. Serious adverse events were observed in 24 percent of the intervention group versus 12 per cent in the controls (p not significant)

    Heart Failure: Will There be Any light at the End of the Tunnel with Stem Cell Therapy?

    Get PDF
    Cardiac regeneration using stem cells emerges as a noveltreatment option for heart failure. Clinical applications havereported encouraging but modest favorable results, concerningcardiac functional recovery. However, many issues need clarification.The most appropriate cell type, the optimal number ofinjected cells and time for cell delivery, as well as the mode ofcell function remain to be elucidated. Furthermore, ways to improve cell survival and long term engraftment are being sought, in an effort to enhance the regenerative capability of the cells. A substantial amount of basic, translational and clinical research is still needed, in order to take advantage of the full therapeuticpotential of stem cell treatments for heart failure

    Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction

    Get PDF
    Therapeutic cell retention and engraftment are critical for myocardial regeneration. Underlying mechanisms, including the role of tissue perfusion, are not well understood. In Wistar Kyoto rats, syngeneic cardiosphere-derived cells (CDCs) were injected intramyocardially, after experimental myocardial infarction. CDCs were labeled with [18F]-FDG (nΒ =Β 7), for quantification of 1-h retention, or with sodium-iodide-symporter gene (NIS; nΒ =Β 8), for detection of 24-h engraftment by reporter imaging. Perfusion was imaged simultaneously. Infarct size was 37Β Β±Β 9 and 38Β Β±Β 9% of LV in FDG and NIS groups. Cell signal was located in the infarct border zone in all animals. No significant relationship was observed between infarct size and 1-h CDC retention (rΒ =Β βˆ’0.65; PΒ =Β 0.11). However, infarct size correlated significantly with 24-h engraftment (rΒ =Β 0.75; PΒ =Β 0.03). Residual perfusion at the injection site was not related to cell retention/engraftment. Larger infarcts are associated with improved CDC engraftment. This observation encourages further investigation of microenvironmental conditions after ischemic damage and their role in therapeutic cell survival

    A Biological Global Positioning System: Considerations for Tracking Stem Cell Behaviors in the Whole Body

    Get PDF
    Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biologyβ€”survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments

    Cell tracking in cardiac repair: what to image and how to image

    Get PDF
    Stem cell therapies hold the great promise and interest for cardiac regeneration among scientists, clinicians and patients. However, advancement and distillation of a standard treatment regimen are not yet finalised. Into this breach step recent developments in the imaging biosciences. Thus far, these technical and protocol refinements have played a critical role not only in the evaluation of the recovery of cardiac function but also in providing important insights into the mechanism of action of stem cells. Molecular imaging, in its many forms, has rapidly become a necessary tool for the validation and optimisation of stem cell engrafting strategies in preclinical studies. These include a suite of radionuclide, magnetic resonance and optical imaging strategies to evaluate non-invasively the fate of transplanted cells. In this review, we highlight the state-of-the-art of the various imaging techniques for cardiac stem cell presenting the strengths and limitations of each approach, with a particular focus on clinical applicability

    Macrophages Homing to Metastatic Lymph Nodes Can Be Monitored with Ultrasensitive Ferromagnetic Iron-Oxide Nanocubes and a 1.5T Clinical MR Scanner

    Get PDF
    Background: Due to the ability of macrophages to specifically home to tumors, their potential use as a delivery vehicle for cancer therapeutics has been suggested. Tracking the delivery and engraftment of macrophages into human tumors with a 1.5T clinical MR scanner requires the development of sensitive contrast agents for cell labeling. Therefore, this study aimed to determine whether intravenously injected macrophages could target a primary tumor as well as metastatic LNs, and whether these cells could be detected in vivo by MRI. Methodology: Peritoneal macrophages were obtained from BALB/c nude mice. The viability, phagocytotic capacity and migratory activity of the macrophages were assessed. MR imaging was performed using a clinical 1.5 T MR scanner and we estimated the T2 * of the labeled macrophages. Metastatic lymph nodes were produced in BALB/c nude mice. We administrated 2610 6 macrophages labeled with 50 mg Fe/mL FIONs intravenously into the mice. In the 3D T2 * GRE MR images obtained one day after the injection of the labeled macrophages or FION solution, the percentages of pixels in the tumors or LNs below the minimum normalized SI (signal intensity) threshold were summated and reported as the black pixel count (%) for the FION hypointensity. Tumors in the main tumor model as well as the brachial, axillary and inguinal lymph nodes in the metastatic LN models were removed and stained. For all statistical analyses, single-group data were assessed using t test or the Mann-Whitney test. Repeated measurements analysis of variance (ANOVA) with Tukey–Krame

    Normalisation to Blood Activity Is Required for the Accurate Quantification of Na/I Symporter Ectopic Expression by SPECT/CT in Individual Subjects

    Get PDF
    The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used 99mTc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to β€˜noisy’, and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy
    • …
    corecore