920 research outputs found

    Identification of Electron Donor States in N-doped Carbon Nanotubes

    Full text link
    Nitrogen doped carbon nanotubes have been synthesized using pyrolysis and characterized by Scanning Tunneling Spectroscopy and transmission electron microscopy. The doped nanotubes are all metallic and exhibit strong electron donor states near the Fermi level. Using tight-binding and ab initio calculations, we observe that pyridine-like N structures are responsible for the metallic behavior and the prominent features near the Fermi level. These electron rich structures are the first example of n-type nanotubes, which could pave the way to real molecular hetero-junction devices.Comment: 5 pages, 4 figures, revtex, submitted to PR

    Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores.

    Get PDF
    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials.Mexican Council for Science and Technology (CONACyT)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2740

    Low-cost machine learning approach to the prediction of transition metal phosphor excited state properties

    Full text link
    Photoactive iridium complexes are of broad interest due to their applications ranging from lighting to photocatalysis. However, the excited state property prediction of these complexes challenges ab initio methods such as time-dependent density functional theory (TDDFT) both from an accuracy and a computational cost perspective, complicating high throughput virtual screening (HTVS). We instead leverage low-cost machine learning (ML) models to predict the excited state properties of photoactive iridium complexes. We use experimental data of 1,380 iridium complexes to train and evaluate the ML models and identify the best-performing and most transferable models to be those trained on electronic structure features from low-cost density functional theory tight binding calculations. Using these models, we predict the three excited state properties considered, mean emission energy of phosphorescence, excited state lifetime, and emission spectral integral, with accuracy competitive with or superseding TDDFT. We conduct feature importance analysis to identify which iridium complex attributes govern excited state properties and we validate these trends with explicit examples. As a demonstration of how our ML models can be used for HTVS and the acceleration of chemical discovery, we curate a set of novel hypothetical iridium complexes and identify promising ligands for the design of new phosphors

    Strain Modulated Superlattices in Graphene

    Full text link
    Strain engineering of graphene takes advantage of one of the most dramatic responses of Dirac electrons enabling their manipulation via strain-induced pseudo-magnetic fields. Numerous theoretically proposed devices, such as resonant cavities and valley filters, as well as novel phenomena, such as snake states, could potentially be enabled via this effect. These proposals, however, require strong, spatially oscillating magnetic fields while to date only the generation and effects of pseudo-gauge fields which vary at a length scale much larger than the magnetic length have been reported. Here we create a periodic pseudo-gauge field profile using periodic strain that varies at the length scale comparable to the magnetic length and study its effects on Dirac electrons. A periodic strain profile is achieved by pulling on graphene with extreme (>10%) strain and forming nanoscale ripples, akin to a plastic wrap pulled taut at its edges. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain results in a new quantization different from the familiar Landau quantization observed in previous studies. We also find that graphene ripples are characterized by large variations in carbon-carbon bond length, directly impacting the electronic coupling between atoms, which within a single ripple can be as different as in two different materials. The result is a single graphene sheet that effectively acts as an electronic superlattice. Our results thus also establish a novel approach to synthesize an effective 2D lateral heterostructure - by periodic modulation of lattice strain.Comment: 18 pages, 5 figures and supplementary informatio

    Defect Engineering: Graphene Gets Designer Defects

    Full text link
    An extended one-dimensional defect that has the potential to act as a conducting wire has been embedded in another perfect graphene sheet.Comment: 2 pages, 1 figur

    On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements

    Get PDF
    The successful application of impedance spectroscopy in daily practice requires accurate measurements for modeling complex physiological or electrochemical phenomena in a single frequency or several frequencies at different (or simultaneous) time instants. Nowadays, two approaches are possible for frequency domain impedance spectroscopy measurements: (1) using the classical technique of frequency sweep and (2) using (non-)periodic broadband signals, i.e. multisine excitations. Both techniques share the common problem of how to design the experimental conditions, e.g. the excitation power spectrum, in order to achieve accuracy of maximum impedance model parameters from the impedance data modeling process. The original contribution of this paper is the calculation and design of the D-optimal multisine excitation power spectrum for measuring impedance systems modeled as 2R-1C equivalent electrical circuits. The extension of the results presented for more complex impedance models is also discussed. The influence of the multisine power spectrum on the accuracy of the impedance model parameters is analyzed based on the Fisher information matrix. Furthermore, the optimal measuring frequency range is given based on the properties of the covariance matrix. Finally, simulations and experimental results are provided to validate the theoretical aspects presented.Peer ReviewedPostprint (published version

    Nanoscale Processing by Adaptive Laser Pulses

    Full text link
    We theoretically demonstrate that atomically-precise ``nanoscale processing" can be reproducibly performed by adaptive laser pulses. We present the new approach on the controlled welding of crossed carbon nanotubes, giving various metastable junctions of interest. Adaptive laser pulses could be also used in preparation of other hybrid nanostructures.Comment: 4 pages, 4 Postscript figure

    Pure and doped boron nitride nanotubes

    Get PDF
    "More than ten years ago, it was suggested theoretically that boron nitride (BN) nanotubes could be produced. Soon after, various reports on their synthesis appeared and a new area of nanotube science was born. This review aims to cover the latest advances related to the synthesis of BN nanotubes. We show that these tubes can now be produced in larger amounts and, in particular, that the chemistry of BN tubes appears to be very important to the production of reinforced composites with insulating characteristics. From the theoretical standpoint, we also show that (BN)-C heteronanotubes could have important implications for nanoelectronics. We believe that BN nanotubes (pure and doped) could be used in the fabrication of novel devices in which pure carbon nanotubes do not perform very efficiently.

    Chemically active substitutional nitrogen impurity in carbon nanotubes

    Full text link
    We investigate the nitrogen substitutional impurity in semiconducting zigzag and metallic armchair single-wall carbon nanotubes using ab initio density functional theory. At low concentrations (less than 1 atomic %), the defect state in a semiconducting tube becomes spatially localized and develops a flat energy level in the band gap. Such a localized state makes the impurity site chemically and electronically active. We find that if two neighboring tubes have their impurities facing one another, an intertube covalent bond forms. This finding opens an intriguing possibility for tunnel junctions, as well as the functionalization of suitably doped carbon nanotubes by selectively forming chemical bonds with ligands at the impurity site. If the intertube bond density is high enough, a highly packed bundle of interlinked single-wall nanotubes can form.Comment: 4 pages, 4 figures; major changes to the tex
    • …
    corecore