112 research outputs found

    Negotiations of minority ethnic rugby league players in the Cathar country of France

    Get PDF
    This article is based on new empirical, qualitative research with minority ethnic rugby league players in the southwest of France. Drawing on similar research on rugby league in the north and the south of England, the article examines how rugby league, traditionally viewed as a white, working-class male game (Collins, 2006; Denham, 2004; Spracklen, 1995, 2001) has had to re-imagine its symbolic boundaries as they are constituted globally and locally to accommodate the needs of players from minority ethnic backgrounds. In particular, the article examines the sense in which experiences of minority ethnic rugby league players in France compare with those of their counterparts in England (Spracklen, 2001, 2007), how rugby league is used in France to construct identity, and in what sense the norms associated with the imaginary community of rugby league are replicated or challenged by the involvement of minority ethnic rugby league players in France. Questions about what it means to be (provincial, national) French (Kumar, 2006) are posed, questions that relate to the role of sport in the construction of Frenchness, and in particular the role of rugby league (and union). © Copyright ISSA and SAGE Publications

    Meiotic Regulation of TPX2 Protein Levels Governs Cell Cycle Progression in Mouse Oocytes

    Get PDF
    Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself

    New Insights into the Genetic Regulation of Homologue Disjunction in Mammalian Oocytes

    Get PDF
    Mammalian oocytes execute a unique meiotic programme involving 2 arrest stages and an unusually protracted preamble to chromosome segregation during the first meiotic division (meiosis I). How mammalian oocytes successfully navigate their exceptional meiotic journey has long been a question of immense interest. Understanding the minutiae of female mammalian meiosis I is not merely of academic interest as 80–90% of human aneuploidy is the consequence of errors arising at this particular stage of oocyte maturation, a stage with a peculiar vulnerability to aging. Recent evidence indicates that oocytes employ many of the same cast of proteins during meiosis I as somatic cells do during mitosis, often to execute similar tasks, but intriguingly, occasionally delegate them to unexpected and unprecedented roles. This is epitomised by the master cell-cycle regulon, the anaphase-promoting complex or cyclosome (APC/C), acting in concert with a critical APC/C-targeted surveillance mechanism, the spindle assembly checkpoint (SAC). Together, the APC/C and the SAC are among the most influential entities overseeing the fidelity of cell-cycle progression and the precision of chromosome segregation. Here I review the current status of pivotal elements underpinning homologue disjunction in mammalian oocytes including spindle assembly, critical biochemical anaphase-initiating events, APC/C activity and SAC signalling along with contemporary findings relevant to progressive oocyte SAC dysfunction as a model for age-related human aneuploidy

    PolyADP-Ribosylation Is Required for Pronuclear Fusion during Postfertilization in Mice

    Get PDF
    BACKGROUND: During fertilization, pronuclear envelope breakdown (PNEB) is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM) for the postfertilization development. METHODOLOGY/PRINCIPAL FINDINGS: Inhibition of poly(ADP-ribose) polymerase activity (PARylation) by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB. PARylation inhibition affects spindle bundle formation and phosphorylation of Erk molecules of metaphase II (MII) unfertilized oocytes. We found a frequent appearance of multiple pronuclei (PN) in the PARylation-inhibited embryos, suggesting defective polymerization of tubulins. Attenuated phosphorylation of lamin A/C by PARylation was detected in the PARylation-inhibited embryos at PNEB. This was associated with sustained localization of heterodomain protein 1 (HP1) at the PN of the one-cell embryos arrested by PARylation inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that PARylation is required for pronuclear fusion during postfertilization processes. These data further suggest that PARylation regulates protein dynamics essential for the beginning of mouse zygotic development. PARylation and its involving signal-pathways may represent potential targets as contraceptives

    The need for multidisciplinarity in specialist training to optimize future patient care

    Get PDF
    Harmonious interactions between radiation, medical, interventional and surgical oncologists, as well as other members of multidisciplinary teams, are essential for the optimization of patient care in oncology. This multidisciplinary approach is particularly important in the current landscape, in which standard-of-care approaches to cancer treatment are evolving towards highly targeted treatments, precise image guidance and personalized cancer therapy. Herein, we highlight the importance of multidisciplinarity and interdisciplinarity at all levels of clinical oncology training. Potential deficits in the current career development pathways and suggested strategies to broaden clinical training and research are presented, with specific emphasis on the merits of trainee involvement in functional multidisciplinary teams. Finally, the importance of training in multidisciplinary research is discussed, with the expectation that this awareness will yield the most fertile ground for future discoveries. Our key message is for cancer professionals to fulfil their duty in ensuring that trainees appreciate the importance of multidisciplinary research and practice

    Replication Factor C Complexes Play Unique Pro- and Anti-Establishment Roles in Sister Chromatid Cohesion

    Get PDF
    Recent studies have lead to a rapid expansion of sister chromatid cohesion pathways. Of particular interest is the growth in classifications of anti-establishment factors—now including those that are cohesin-associated (Rad61/WAPL and Pds5) or DNA replication fork-associated (Elg1-RFC). In this study, we show that the two classes of anti-establishment complexes are indistinguishable when challenged both genetically and functionally. These findings suggest that both classes function in a singular pathway that is centered on Ctf7/Eco1 (herein termed Ctf7) regulation. The anti-establishment activity of Elg1-RFC complex is particular intriguing given that an alternate Ctf18-RFC complex exhibits robust pro-establishment activity. Here, we provide several lines of evidence, including the use of Ctf7 bypass suppressors, indicating that these activities are not simply antagonistic. Moreover, the results suggest that Ctf18-RFC is capable of promoting sister chromatid pairing reactions independent of Ctf7. The combination of these studies suggest a new model of sister chromatid pairing regulation

    Geriatric oncology: comparing health related quality of life in head and neck cancer patients

    Get PDF
    Background: Population ageing is increasing the number of people annually diagnosed with cancer worldwide, once most types of tumours are age-dependent. High-quality healthcare in geriatric oncology requires a multimodal approach and should take into account stratified patient outcomes based on factors other than chronological age in order to develop interventions able to optimize oncology care. This study aims to evaluate the Health Related Quality of Life in head and neck cancer patients and compare the scores in geriatric and younger patients. Methods. Two hundred and eighty nine head and neck cancer patients from the Oncology Portuguese Institute participated in the Health Related Quality of Life assessment. Two patient groups were considered: the geriatric ( 65 years old, n = 115) and the younger (45-60 years old, n= 174). The EORTC QLQ-C30 and EORTC QLQ-H&N35 questionnaires were used. Results: Head and neck cancer patients were mostly males, 77.4% within geriatric group and 91.4% among younger patients group. The most frequent tumour locations were similar in both groups: larynx, oral cavity and oropharynx - base of the tongue. At the time of diagnosis, most of younger male patients were at disease stage III/IV (55.9%) whereas the majority of younger female patients were at disease stage I/II (83.4%). The geriatric patient distribution was found to be similar in any of the four disease stages and no gender differences were observed. We found that age (geriatrics scored generally worse), gender (females scored generally worse), and tumour site (larynx tumours denounce more significant problems between age groups) clearly influences Health Related Quality of Life perceptions. Conclusions: Geriatric oncology assessments signalize age-independent indicators that might guide oncologic geriatric care optimization. Decision-making in geriatric oncology must be based on tumour characteristics and chronological age but also on performance status evaluation, co-morbidity, and patient reported outcomes assessment.info:eu-repo/semantics/publishedVersio

    New Functions of Ctf18-RFC in Preserving Genome Stability outside Its Role in Sister Chromatid Cohesion

    Get PDF
    Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability—expansions, contractions, and fragility—with effect over a wide range of allele lengths from 20–155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair

    A dose-escalation study of indisulam in combination with capecitabine (Xeloda) in patients with solid tumours

    Get PDF
    This dose escalation study was designed to determine the recommended dose of the multi-targeted cell cycle inhibitor indisulam in combination with capecitabine in patients with solid tumours and to evaluate the pharmacokinetics of the combination. Thirty-five patients were treated with indisulam on day 1 of each 21-day cycle. Capecitabine was administered two times daily (BID) on days 1–14. Plasma concentrations of indisulam, capecitabine and its three metabolites were determined for pharmacokinetic analysis. The main dose-limiting toxicity was myelosuppression. Hand/foot syndrome and stomatitis were the major non-haematological toxicities. The recommended dose was initially established at indisulam 700 mg m−2 and capecitabine 1250 mg m−2 BID. However, during cycle 2 the recommended dose was poorly tolerated in three patients. A dose of indisulam 500 mg m−2 and capecitabine 1250 mg m−2 BID proved to be safe at cycle 1 and 2 in nine additional patients. Indisulam pharmacokinetics during cycle 1 were consistent with pharmacokinetic data from phase I mono-therapy studies. However, exposure to indisulam was remarkably increased at cycle 2 due to a drug–drug interaction between capecitabine and indisulam. Partial response was confirmed in two patients, one with colon carcinoma and the other with pancreatic carcinoma. Seventeen patients had stable disease. Indisulam (700 mg m−2) in combination with capecitabine (1250 mg m−2 BID) was well tolerated during the first cycle. A dose of indisulam 500 mg m−2 and capecitabine 1250 mg m−2 BID was considered safe in multiple treatment cycles. The higher incidence of toxicities observed during cycle 2 can be explained by a time-dependent pharmacokinetic drug–drug interaction
    corecore