53 research outputs found

    RNA major groove modifications improve siRNA stability and biological activity

    Get PDF
    RNA 5-methyl and 5-propynyl pyrimidine analogs were substituted into short interfering RNAs (siRNAs) to probe major groove steric effects in the active RNA-induced silencing complex (RISC). Synthetic RNA guide strands containing varied combinations of propynyl and methyl substitution revealed that all C-5 substitutions increased the thermal stability of siRNA duplexes containing them. Cellular gene suppression experiments using luciferase targets in HeLa cells showed that the bulky 5-propynyl modification was detrimental to RNA interference activity, despite its stabilization of the helix. Detrimental effects of this substitution were greatest at the 5′-half of the guide strand, suggesting close steric approach of proteins in the RISC complex with that end of the siRNA/mRNA duplex. However, substitutions with the smaller 5-methyl group resulted in gene silencing activities comparable to or better than that of wild-type siRNA. The major groove modifications also increased the serum stability of siRNAs

    RNA modified with acyclic threoninol nucleic acids for RNA interference

    Get PDF
    Upon the discovery of the RNA interference pathway, the development of nucleic acids derivatives for therapeutic purposes has soon caught the attention of biomedical researchers. Although synthetic small interfering RNA (siRNA) has been extensively used to downregulate any protein-coding mRNA, several key issues still remain unsolved. The acyclic threoninol nucleic acid (aTNA), placed at certain siRNA positions, is a useful modification to reduce the oligonucleotides vulnerability towards nucleases. In addition, it can be exploited to avoid several OFF-target effects that limit the biological safety of the RNAi-based agents.We thank the European Union (NMP4-LA-2011-262943, MULTIFUN), the Spanish MINECO (CTQ2014-52588-R and CTQ2014-61758-EXP), and the Generalitat de Catalunya for funding this research. CIBER-BBN is financed by the European Regional Development Fund and the Instituto de Salud Carlos III through an initiative funded during the VI Plan Nacional 2008-2011, the Ingenio 2010, the Consolider Program, and the CIBER Action.Peer reviewe

    RNA/aTNA chimeras: RNAi effects and nucleases resistance of single and double stranded RNAs

    Get PDF
    The RNA interference pathway (RNAi) is a specific and powerful biological process, triggered by small non-coding RNA molecules and involved in gene expression regulation. In this work, we explored the possibility of increasing the biological stability of these RNA molecules by replacing their natural ribose ring with an acyclic L-threoninol backbone. In particular, this modification has been incorporated at certain positions of the oligonucleotide strands and its effects on the biological properties of the siRNA have been evaluated. In vitro cellular RNAi assays have demonstrated that the L-threoninol backbone is well tolerated by the RNAi machinery in both double and single-stranded fashion, with activities significantly higher than those evinced by the unmodified RNAs and comparable to the well-known phosphorothioate modification. Additionally, this modification conferred extremely strong resistance to serum and 3′/5′-exonucleases. In view of these results, we applied this modification to the knockdown of a therapeutically relevant human gene such as apolipoprotein B ( ApoB). Further studies on the activation of the innate immune system showed that L-threoninol-modified RNAs are slightly less stimulatory than unmodified RNAs.This study was supported by the European Union (MULTIFUN, NMP4-LA-2011-262943), the Spanish Ministry of Education (CTQ2010-20541), Generalitat de Catalunya (2009/SGR/208). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. We are indebted to Elisa Pedone for her helpful advice and for providing technical assistance.Peer reviewe

    Synthesis and properties of small interfering RNA duplexes carrying 5-ethyluridine residues

    Get PDF
    Oligoribonucleotides carrying 5-ethyluridine units were prepared using solid-phase phosphoramidite chemistry. The introduction of the tert-butyldimethylsilyl group at the 2'-OH position proceeded in good yield and very high 2'-regioselectivity. RNA duplexes carrying 5-ethyluridine either at the sense or the guide strands display RNAi activity comparable to or slightly better than that of unmodified RNA duplexes. Gene suppression experiments using luciferase targets in SH-SY5Y cells show that the ethyl group is generally well accepted at all positions although a small decrease in RNA interference activity is observed when one 5-ethylU residue is incorporated in the 3' overhangs

    Modified siRNAs for the study of the PAZ domain

    Get PDF
    Chemical modifications aimed at stabilizing the interaction between the 3'-end of siRNAs and the PAZ domain of RISC have been tested for their effect on RNAi activity. Such modifications contribute positively to the stability of siRNAs in human serum

    Can a denaturant stabilize DNA? Pyridine reverses DNA denaturation in acidic pH

    Full text link
    The stability of DNA is highly dependent on the properties of the surrounding solvent, such as ionic strength, pH, and the presence of denaturants and osmolytes. Addition of pyridine is known to unfold DNA by replacing π-π stacking interactions between bases, stabilizing conformations in which the nucleotides are solvent exposed. We show here experimental and theoretical evidences that pyridine can change its role and in fact stabilize the DNA under acidic conditions. NMR spectroscopy and MD simulations demonstrate that the reversal in the denaturing role of pyridine is specific, and is related to its character as pseudo groove binder. The present study sheds light on the nature of DNA stability and on the relationship between DNA and solvent, with clear biotechnological implications

    Stepwise synthesis of oligonucleotide-peptide conjugates containing guanidinium and lipophilic groups in their 3'-termini

    Get PDF
    Two different series of oligonucleotide-peptide conjugates have been efficiently synthesized by stepwise solid-phase synthesis. First, oligonucleotides and oligonucleotide phosphorothioates containing polar groups at the 3′-termini, such as amine and guanidinium groups were prepared. ODNs conjugates carrying several lysine residues were obtained directly from Fmoc deprotection whereas ODN conjugates with guanidinium groups were obtained by post-synthetic guanidinylation. The second family contains different urea moieties that were achieved by standard protocols. All products were fully characterized by reversed phase HPLC and MALDI-TOF mass spectrometry yielding satisfactory results. Oligonucleotide-phosphorothioate conjugates were evaluated as potential antisense oligonucleotides in the inhibition of the luciferase gene

    Modified siRNAs for the study of the PAZ domain

    Get PDF
    Chemical modifications aimed at stabilizing the interaction between the 3′-end of siRNAs and the PAZ domain of RISC have been tested for their effect on RNAi activity. Such modifications contribute positively to the stability of siRNAs in human serum.Peer reviewe

    Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2

    Full text link
    We combine molecular dynamics, statistical mechanics, and hybrid quantum mechanics/molecular mechanics simulations to describe mechanistically the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp). Our study analyzes the binding mode of both natural triphosphate substrates as well as remdesivir triphosphate (the active form of drug), which is bound preferentially over ATP by RdRp while being poorly recog- nized by human RNA polymerase II (RNA Pol II). A comparison of incorporation rates between natural and antiviral nucleotides shows that remdesivir is incorporated more slowly into the nascent RNA compared with ATP, leading to an RNA duplex that is structurally very similar to an unmodified one, arguing against the hypothesis that remdesivir is a competitive inhibitor of ATP. We characterize the entire mechanism of reaction, finding that viral RdRp is highly processive and displays a higher catalytic rate of incorporation than human RNA Pol II. Overall, our study provides the first detailed explanation of the replication mechanism of RdRp
    corecore