2,693 research outputs found

    The periodic table of the elements: the search for transactinides and beyond

    Get PDF
    AbstractThe periodic table of Mendeleev, initially proposed on the basis of 66 elements, and containing 82 elements at the time of Moseley (1887–1915), describes nowadays 118 elements. The huge challenge of this scientific adventure was, and still is, the development of technologies and methods capable of producing elements of atomic number Z > 103, known as superheavy elements (SHE), or transactinides. This paper presents a survey of experiments and theoretical approaches that led physicists and chemists of today to discover and characterize a number of SHE isotopes. A glance is also given to the feasibility studies performed by scientists aiming to going beyond Z = 118, building up further neutron-rich nuclides and reaching the ultimate goal of creating long-living new elements at the edge of the Periodic Table

    Neutrino oscillation studies with laser-driven beam dump facilities

    Full text link
    A new mechanism is suggested for efficient proton acceleration in the GeV energy range; applications to non-conventional high intensity proton drivers and, hence, to low-energy (10-200 MeV) neutrino sources are discussed. In particular we investigate possible uses to explore subdominant νˉμ→νˉe\bar{\nu}_\mu \to \bar{\nu}_e oscillations at the atmospheric scale and their CP conjugate. We emphasize the opportunity to develop these facilities in conjunction with projects for inertial confined nuclear fusion and neutron spallation sources.Comment: 30 pages, 9 figures, minor changes, version to appear in Nucl.Instrum.Meth.

    3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study

    Get PDF
    The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p < 0.05 and 0.087 ± 0.045, p < 0.05) and LD bones (respectively 88.8 ± 1.57% and 0.037 ± 0.014), but exhibited a higher surface density (5.56 ± 0.11 mm(2)/mm(3) vs. 2.06 ± 0.26 for LD, p < 0.05). LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture

    In-Vitro steroidogenesis of newly formed corpora lutea and the non-luteal ovary in the rat, rabbit, hamster and guinea-pig

    Get PDF
    The steroidogenic abilities of the newly formed corpus luteum (8-10 h after ovulation) and the non-luteal ovary were compared in the guinea-pig, hamster, rabbit and rat using an invitro incubation technique. Histologically, newly formed rat corpora lutea (CL) were highly luteinized whereas the CL of the rabbit and guinea-pig were only partially luteinized. The CL of the hamster showed the least amount of luteinization. Serum progesterone was highest in the rat (18 ± 3 (s.e.m.) ng/ml). In the hamster, it was about 8 ng/ml, whereas in the rabbit and guinea-pig it was about 1 ng/ml. Serum androstenedione ranged between 0.5 and 1 ng/ml. Serum testosterone was lowest in the hamster (60 pg/ml) and highest in the rabbit (470 pg/ml), whereas in the rat and guinea-pig, testosterone levels were similar (about 240 pg/ml). Serum oestrogens were at baseline levels in all species. The CL of the rat exhibited considerably greater steroidogenic ability than the CL of the other species, producing 70 ± 6 ng progesterone/mg per h, 215 ± 14 pg androstenedione/mg per h, 49 ± 3 pg testosterone/mg per h, 3 pg oestrone/mg per h and 1 pg oestradiol/mg per h. Rabbit CL produced only progesterone (7 ± 2 ng/mg per h). Newly formed hamster CL produced none of the above steroids. In general, the ability of the CL to produce progesterone in vitro correlated with the degree of luteinization found by histological observation. Guinea-pig CL were embedded deeply in the ovary and could not be obtained without damage. Consequently, a portion of the ovary containing a corpus luteum was incubated. There was no difference in the steroid production by this portion of the ovary compared with the non-luteal ovary. The non-luteal ovary of the rat produced the highest amount of progesterone (10 ± 2 ng/mg per h). The guinea-pig non-luteal ovary produced about 5 ± 2 ng progesterone/mg per h, whereas the non-luteal ovary of the rabbit did not produce any. On the other hand, the hamster non-luteal ovary lost progesterone. Non-luteal ovaries from all species produced androgens. The non-luteal ovary of the guinea-pig contained especially large numbers of atretic antral follicles. The guinea-pig non-luteal ovary produced extremely large amounts of androstenedione (1110 ± 210 pg/mg per h) and testosterone (606 ± 154 pg/mg per h) compared with the amounts produced by the non-luteal ovary of the rat, hamster and rabbit. In the non-luteal ovary, interstitium and atretic antral follicles are the probable source of androgens. Oestrogen production by the non-luteal ovary was at baseline levels in the four species studied correlating with the absence of healthy antral follicles. The results indicate the extreme species differences that exist in ovarian function in the early postovulatory period

    A Beta Beam complex based on the machine upgrades for the LHC

    Get PDF
    The Beta Beam CERN design is based on the present LHC injection complex and its physics reach is mainly limited by the maximum rigidity of the SPS. In fact, some of the scenarios for the machine upgrades of the LHC, particularly the construction of a fast cycling 1 TeV injector (``Super-SPS''), are very synergic with the construction of a higher γ\gamma Beta Beam. At the energies that can be reached by this machine, we demonstrate that dense calorimeters can already be used for the detection of ν\nu at the far location. Even at moderate masses (40 kton) as the ones imposed by the use of existing underground halls at Gran Sasso, the CP reach is very large for any value of θ13\theta_{13} that would provide evidence of νe\nu_e appearance at T2K or NOν\nuA (θ13≥3∘\theta_{13}\geq 3^\circ). Exploitation of matter effects at the CERN to Gran Sasso distance provides sensitivity to the neutrino mass hierarchy in significant areas of the θ13−δ\theta_{13}-\delta plane

    Kinetic description of hadron-hadron collisions

    Full text link
    A transport model based on the mean free path approach to describe pp collisions is proposed. We assume that hadrons can be treated as bags of partons similarly to the MIT bag model. When the energy density in the collision is higher than a critical value, the bags break and partons are liberated. The partons expand and can make coalescence to form new hadrons. The results obtained compare very well with available data and some prediction for higher energies collisions are discussed. Based on the model we suggest that a QGP could already be formed in the pp collisions at high energies
    • …
    corecore