7,148 research outputs found

    Particle acceleration in sub-cycle optical cells

    Full text link
    A single laser pulse with spot size smaller than half its wavelength (w0<λ/2w_0 < \lambda/2) can provide a net energy gain to ultra-relativistic particles. In this paper, we discuss the properties of an optical cell consisting of NN sub-cycle pulses that propagate in the direction perpendicular to the electron motion. We show that the energy gain produced by the cell is proportional to NN and it is sizable even for O(1 TW)\mathcal{O}(1\mathrm{~TW}) pulses.Comment: 13 pages, 7 figures. Version to appear in PRSTA

    Attorneys as Debt Relief Agencies: Constitutional Considerations

    Get PDF

    A Smart Choice

    Get PDF
    Graduate Education: Curriculum & Instructio

    Attorneys as Debt Relief Agencies: Constitutional Considerations

    Get PDF

    Pacemaker Prevention Therapy in Drug–refractory Paroxysmal Atrial Fibrillation: Reliability of Diagnostics and Effectiveness of Prevention Pacing Therapy in Vitatron™ Selection® device

    Get PDF
    Introduction. Atrial fibrillation (AF), the most common and rising disorder of cardiac rhythm, is quite difficult to control and/or to treat. Non pharmacological therapies for AF may involve the use of dedicated pacing algorithms to detect and prevent atrial arrhythmia that could be a trigger for AF onset. Selection 900E/AF2.0 Vitatron DDDRP pacemaker (1) keeps an atrial arrhythmia diary thus providing detailed onset reports of arrhythmias of interest, (2) provides us data about the number of premature atrial contractions (PACs) and (3) plots heart rate in the 5 minutes preceding the detection of an atrial arrhythmia. Moreover, this device applies four dedicated pacing therapies to reduce the incidence of atrial arrhythmia and AF events. Aim of the Study. To analyze the reliability to record atrial arrhythmias and evaluate effectiveness of its AF preventive pacing therapies. Material and Methods. We enrolled 15 patients (9 males and 6 females, mean age of 71±5 years, NYHA class I–II), with a DDDRP pacemaker implanted for a “bradycardia–tachycardia” syndrome, with advanced atrioventricular conduction disturbances. We compared the number and duration of AF episodes’ stored in the device with a contemporaneous 24h Holter monitoring. After that, we switched on the atrial arrhythmias detecting algorithms, starting from an atrial rate over 180 beats per minute for at least 6 ventricular cycles, and ending with at least 10 ventricular cycles in sinus rhythm. Thereafter, in order to evaluate the possible reduction in PACs number and in number and duration of AF episodes, we tailored all the four pacing preventive algorithms. Patients were followed for 24±8 months (from 20 to 32 months). Results. All 59 atrial arrhythmia episodes occurred in the first part of this trial, were correctly recorded by both systems, with a correlation coefficient (r) of 0.96. During the follow–up, we observed a significant reduction not only in PACs number (from 83±12/day to 2.3±0.8/day) but also in AF episodes (from 46±7/day to 0.12±0.03/day) and AF burden (from 93%±6% to 0.3%±0.06%). An increase in atrial pacing percentages (from 3%±0.5% to 97%±3%) was also contemporaneously observed. Conclusion. In this pacemaker, detection of atrial arrhythmia episodes is highly reliable, thus making available an appropriate monitoring of heart rhythm, mainly suitable in AF asymptomatic patients. Moreover, the significant reduction of atrial arrhythmia episodes indicates that this might represent a suitable therapeutic option for an effective preventive therapy of AF in paced brady–tachy patients

    Large Momenta Fluctuations Of Charm Quarks In The Quark-Gluon Plasma

    Full text link
    We show that large fluctuations of D mesons kinetic energy (or momentum) distributions might be a signature of a phase transition to the quark gluon plasma (QGP). In particular, a jump in the variance of the momenta or kinetic energy, as a function of a control parameter (temperature or Fermi energy at finite baryon densities) might be a signature for a first order phase transition to the QGP. This behaviour is completely consistent with the order parameter defined for a system of interacting quarks at zero temperature and finite baryon densities which shows a jump in correspondance to a first order phase transition to the QGP. The J/ΨJ/\Psi shows exactly the same behavior of the order parameter and of the variance of the D mesons. We discuss implications for relativistic heavy ion collisions within the framework of a transport model and possible hints for experimental data.Comment: 4 pages 3 figure
    • …
    corecore