1,826 research outputs found
Nanoplastics in the oceans: Theory, experimental evidence and real world
This review critically analyses >200 papers collected by searching on Pubmed the word \u201cnanoplastics\u201d, a group of emerging contaminants which are receiving growing attention. The present review intends to provide an overview of current knowledge on nanoplastic pollution starting with the theory of polymer degradation, passing to laboratory confirmation of nanoplastic formation and ending with the possible occurrence in sea water samples. Most of the observations proposed focus the attention on polystyrene (PS) because the majority of research knowledge is based on this polymer. Moreover, we thoroughly describe what effects have been observed on different organisms tested in controlled conditions. Nanoplastics formation, fate and toxicity seem to be a very dynamic phenomenon. In light of this, we identify some aspects retained crucial when an ecotoxicological study with nanoplastics is performed and which elements of nanoplastics toxicity could be deeper covered
Electrons on a sphere in disorder potential
We investigate, both analytically and numerically, the behavior of the
electron gas on a sphere in the presence of point-like impurities. We find a
criterion when the disorder can be regarded as small one and the main effect is
the broadening of rotational multiplets. In the latter regime the statistics of
one impurity-induced band is studied numerically. The energy level spacing
distribution function follows the law P(s) ~ s exp(-a s^b) with 1<b<2. The
number variance shows various possibilities, strongly dependent on the chosen
model of disorder.Comment: 11 pages, REVTEX, 9 eps figures; references added to Sec.
Consistent Anisotropic Repulsions for Simple Molecules
We extract atom-atom potentials from the effective spherical potentials that
suc cessfully model Hugoniot experiments on molecular fluids, e.g., and
. In the case of the resulting potentials compare very well with the
atom-atom potentials used in studies of solid-state propertie s, while for
they are considerably softer at short distances. Ground state (T=0K) and
room temperatu re calculations performed with the new potential resolve
the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure
Parasitic infection in the scyphozoan Rhizostoma pulmo (Macri, 1778)
: Very little information is reported for parasites of cnidarians, therefore, the present work aimed to investigate parasitic infections in one of the most widespread jellyfish in the Mediterranean Sea, Rhizostoma pulmo. The goals were to determine prevalence and intensity of parasites in R. pulmo, identify the species involved through morphological and molecular analysis, test whether infection parameters differ in different body parts and in relation to jellyfish size. 58 individuals were collected, 100% of them infected with digenean metacercariae. Intensity varied between 18.7 ± 6.7 per individual in 0-2 cm diameter jellyfish up to 505 ± 50.6 in 14 cm ones. Morphological and molecular analyses suggest that the metacercariae belonged to the family Lepocreadiidae and could be possibly assigned to the genus Clavogalea. Prevalence values of 100% suggest that R. pulmo is an important intermediate host in the life cycle of lepocreadiids in the region. Our findings also support the hypothesis that R. pulmo is an important part in the diet of teleost fish, which are reported as definitive hosts of lepocreadiids, since trophic transmission is necessary for these parasites to complete their life cycles. Parasitological data may therefore be useful to investigate fish-jellyfish predation, integrating traditional methods such as gut contents analysis
Preliminary evaluation of the climate-induced fatigue in wood: A physical and computational approach
Wood is the organic hygroscopic material for excellence. Due to its extremely easy handling, it has always been used in many applications, especially as building material for artefacts and works of art. However, it is highly climate-susceptible as it swells or shrinks by exchanging moisture with the surrounding environment when natural or artificial microclimatic fluctuations occur. The shrinkage/swelling of wood, if repeated over time, may cause the arising of deformations or damage that may lead to catastrophic failures. For this reason, in this work, a preliminary study about the effect that repeated microclimatic loads have on wooden samples is carried out. To do so, well-established fatigue approaches have been implemented, with few simplifying considerations. The case study is a slice of Scots pine which is assumed to be stored inside Ringebu stave church (Norway). Ringebu indoor microclimate is reconstructed, through a proper transfer function, starting from outdoor temperature data downloaded from web platforms. The reconstructed indoor temperature timeseries cover three periods: far past (1948–1977), recent past (1981–2010) and far future (2071–2100). The results obtained for the three periods made it possible to gain insights about the climate-induced fatigue of wood and to preliminary assess the impact of climate change. It has been observed that successive similar temperature fluctuations can be potentially treated as a block of constant amplitude and constant frequency fatigue-like load. Finally, introducing few simplifying considerations, it has been assessed that the simulated behavior is coherent with the theoretical one coming from exploiting well-established thermo-based methods
Variance Sum Rule for Entropy Production
Entropy production is the hallmark of nonequilibrium physics, quantifying
irreversibility, dissipation, and the efficiency of energy transduction
processes. Despite many efforts, its measurement at the nanoscale remains
challenging. We introduce a variance sum rule for displacement and force
variances that permits us to measure the entropy production rate in
nonequilibrium steady states. We first illustrate it for directly measurable
forces, such as an active Brownian particle in an optical trap. We then apply
the variance sum rule to flickering experiments in human red blood cells. We
find that is spatially heterogeneous with a finite correlation length
and its average value agrees with calorimetry measurements. The VSR paves the
way to derive using force spectroscopy and time-resolved imaging in
living and active matter.Comment: 5 pages and 4 figures. It also contains Supp. Info. with 6 additional
figures and 4 table
Electrochemotherapy Is Effective in the Treatment of Bone Metastases
Bone metastases induce pain, risk of fracture, and neural compression, and reduced mobility and quality of life. Electrochemotherapy (ECT) is a minimally invasive local treatment based on a high-voltage electric pulse combined with an anticancer drug. Preclinical and clinical studies have supported the use of ECT in patients with metastatic bone disease, demonstrating that it does not damage the mineral structure of the bone and its regenerative capacity, and that is feasible and efficient for the treatment of bone metastases. Since 2009, 88 patients with bone metastasis have received ECT at the Rizzoli Institute. 2014 saw the start of a registry of patients with bone metastases treated with ECT, whose data are recorded in a shared database. We share the Rizzoli Institute experience of 38 patients treated with ECT for a bone metastasis, excluding patients not included in the registry (before 2014) and those treated with bone fixation. Mean follow-up was 2 months (1–52). Response to treatment using RECIST criteria was 29% objective responses, 59% stable disease, and 16% progressive disease. Using PERCIST, the response was 36% OR, 14% SD, and 50% PD with no significant differences between the two criteria. A significant decrease in pain and better quality of life was observed at FU
- …