20 research outputs found

    Assessment of Gastrointestinal Autonomic Dysfunction:Present and Future Perspectives

    Get PDF
    The autonomic nervous system delicately regulates the function of several target organs, including the gastrointestinal tract. Thus, nerve lesions or other nerve pathologies may cause autonomic dysfunction (AD). Some of the most common causes of AD are diabetes mellitus and α-synucleinopathies such as Parkinson’s disease. Widespread dysmotility throughout the gastrointestinal tract is a common finding in AD, but no commercially available method exists for direct verification of enteric dysfunction. Thus, assessing segmental enteric physiological function is recommended to aid diagnostics and guide treatment. Several established assessment methods exist, but disadvantages such as lack of standardization, exposure to radiation, advanced data interpretation, or high cost, limit their utility. Emerging methods, including high-resolution colonic manometry, 3D-transit, advanced imaging methods, analysis of gut biopsies, and microbiota, may all assist in the evaluation of gastroenteropathy related to AD. This review provides an overview of established and emerging assessment methods of physiological function within the gut and assessment methods of autonomic neuropathy outside the gut, especially in regards to clinical performance, strengths, and limitations for each method

    Clinical autonomic nervous system laboratories in Europe: a joint survey of the European Academy of Neurology and the European Federation of Autonomic Societies

    Get PDF
    Š 2022 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.Background and purpose: Disorders of the autonomic nervous system (ANS) are common conditions, but it is unclear whether access to ANS healthcare provision is homogeneous across European countries. The aim of this study was to identify neurology-driven or interdisciplinary clinical ANS laboratories in Europe, describe their characteristics and explore regional differences. Methods: We contacted the European national ANS and neurological societies, as well as members of our professional network, to identify clinical ANS laboratories in each country and invite them to answer a web-based survey. Results: We identified 84 laboratories in 22 countries and 46 (55%) answered the survey. All laboratories perform cardiovascular autonomic function tests, and 83% also perform sweat tests. Testing for catecholamines and autoantibodies are performed in 63% and 56% of laboratories, and epidermal nerve fiber density analysis in 63%. Each laboratory is staffed by a median of two consultants, one resident, one technician and one nurse. The median (interquartile range [IQR]) number of head-up tilt tests/laboratory/year is 105 (49-251). Reflex syncope and neurogenic orthostatic hypotension are the most frequently diagnosed cardiovascular ANS disorders. Thirty-five centers (76%) have an ANS outpatient clinic, with a median (IQR) of 200 (100-360) outpatient visits/year; 42 centers (91%) also offer inpatient care (median 20 [IQR 4-110] inpatient stays/year). Forty-one laboratories (89%) are involved in research activities. We observed a significant difference in the geographical distribution of ANS services among European regions: 11 out of 12 countries from North/West Europe have at least one ANS laboratory versus 11 out of 21 from South/East/Greater Europe (p = 0.021). Conclusions: This survey highlights disparities in the availability of healthcare services for people with ANS disorders across European countries, stressing the need for improved access to specialized care in South, East and Greater Europe.info:eu-repo/semantics/publishedVersio

    EFAS/EAN survey on the influence of the COVID-19 pandemic on European clinical autonomic education and research

    Get PDF
    Š The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose: To understand the influence of the coronavirus disease 2019 (COVID-19) pandemic on clinical autonomic education and research in Europe. Methods: We invited 84 European autonomic centers to complete an online survey, recorded the pre-pandemic-to-pandemic percentage of junior participants in the annual congresses of the European Federation of Autonomic Societies (EFAS) and European Academy of Neurology (EAN) and the pre-pandemic-to-pandemic number of PubMed publications on neurological disorders. Results: Forty-six centers answered the survey (55%). Twenty-nine centers were involved in clinical autonomic education and experienced pandemic-related didactic interruptions for 9 (5; 9) months. Ninety percent (n = 26/29) of autonomic educational centers reported a negative impact of the COVID-19 pandemic on education quality, and 93% (n = 27/29) established e-learning models. Both the 2020 joint EAN-EFAS virtual congress and the 2021 (virtual) and 2022 (hybrid) EFAS and EAN congresses marked higher percentages of junior participants than in 2019. Forty-one respondents (89%) were autonomic researchers, and 29 of them reported pandemic-related trial interruptions for 5 (2; 9) months. Since the pandemic begin, almost half of the respondents had less time for scientific writing. Likewise, the number of PubMed publications on autonomic topics showed the smallest increase compared with other neurological fields in 2020-2021 and the highest drop in 2022. Autonomic research centers that amended their trial protocols for telemedicine (38%, n = 16/41) maintained higher clinical caseloads during the first pandemic year. Conclusions: The COVID-19 pandemic had a substantial negative impact on European clinical autonomic education and research. At the same time, it promoted digitalization, favoring more equitable access to autonomic education and improved trial design.info:eu-repo/semantics/publishedVersio

    Effects of the Paced Auditory Serial Addition Task (PASAT) with different rates on autonomic nervous system responses and self-reported levels of stress

    Get PDF
    To characterise self-reported levels of stress and autonomic responses in healthy humans evoked by different rates of the Paced Auditory Serial Addition Task (PASAT). Fifteen participants performed PASATs with different rates (3¡6-, 2¡4-, 1¡6- or 1¡2-s intervals) and a control task, in random order. Correct responses, self-reported levels of stress and autonomic responses to the PASATs were estimated. Increased PASAT rates were associated with decreases in correct responses (P < 0¡001) and increases in self-reported levels of stress (P < 0¡001). For autonomic responses, significant changes were seen in 10 variables during 2¡4-s PASAT compared with the respective baseline; however, significant differences in relative changes from baseline were found between the 2¡4-s PASAT and control task only for mean RR-intervals (P < 0¡001), systolic and diastolic blood pressure (P = 0¡002 and P = 0¡006) and cardiac output (P < 0¡001). Regarding comparison between the four PASATs, significant differences in the relative changes from baseline were seen between the 3¡6-s PASAT and faster PASATs, for example mean RR-intervals, high-frequency power and respiration rate; however, there were no differences between the faster PASATs. The autonomic responses during the PASATs with different rates were quite similar for the faster PASATs (intervals < 2¡4 s); however, the slowest 3¡6-s PASAT evoked significantly less self-reported stress and autonomic arousal compared with the faster PASATs. Standardization of the PASAT rate may be important for studies on autonomic nervous system function and self-reported measures of stress. Future studies may test more complex interactions between stress, autonomic responses and pain responses

    Functional and 123I-MIBG scintigraphy assessment of cardiac adrenergic dysfunction in diabetes

    Get PDF
    Objectives: To assess the agreement between clinical cardiovascular adrenergic function and cardiac adrenergic innervation in type 2 diabetes patients (T2D). Methods: Thirty-three patients with T2D were investigated bimodally through (1) a standardized clinical cardiovascular adrenergic assessment, evaluating adequacy of blood pressure responses to the Valsalva maneuver and (2) 123I-meta-iodobenzylguanidine (MIBG) scintigraphy assessing myocardial adrenergic innervation measured as early and delayed heart heart/mediastinum (H/M) ratio, and washout rate (WR). Results: T2D patients had significantly lower early and delayed H/M-ratios, and lower WR, compared to laboratory specific reference values. Thirteen patients had an abnormal adrenergic composite autonomic severity score (CASS &gt; 0). Patients with abnormal CASS scores had significantly higher early H/M ratios (1.76 [1.66–1.88] vs. 1.57 [1.49–1.63], p &lt; 0.001), higher delayed H/M ratios (1.64 [1.51:1.73] vs. 1.51 [1.40:1.61] (p = 0.02)), and lower WR (−0.13(0.10) vs −0.05(0.07), p = 0.01). Lower Total Recovery and shorter Pressure Recovery Time responses from the Valsalva maneuver was significantly correlated to lower H/M early (r = 0.55, p = 0.001 and r = 0.5, p = 0.003, respectively) and lower WR for Total Recovery (r = −0.44, p = 0.01). Conclusion: The present study found impairment of sympathetic innervation in T2D patients based on parameters derived from MIBG cardiac scintigraphy (low early H/M, delayed H/M, and WR). These results confirm prior studies. We found a mechanistically inverted relationship with favourable adrenergic cardiovascular responses being significantly associated unfavourable MIBG indices for H/M early and delayed. This paradoxical relationship needs to be further explored but could indicate adrenergic hypersensitivity in cardiac sympathetic denervated T2D patients.</p
    corecore