87 research outputs found

    Model Reduction Techniques for Chemical Mechanisms

    Get PDF

    Emission characteristics of a novel low NOx burner fueled by hydrogen-rich mixtures with methane

    Get PDF
    The use of hydrogen-rich fuels may be challenging for burner designers due to unique properties of hydrogen compared to conventional fuels such as natural gas. Burner retrofit may be required to use hydrogen-enriched fuels in combustion systems that are designed for natural gas combustion. This study aimed to experimentally investigate NOx emissions from a novel low NOx burner fueled by methane-hydrogen mixtures. The burner was tested in a cylindrical combustion chamber at atmospheric pressure. Burner thermal load of 25 kW (LHV) and air-fuel equivalence ratio of 1.15 were maintained throughout the experimental campaign. The influence of burner design parameters on NOx emissions was tested for various fuel compositions using a statistically cognizant experimental design. The study revealed that shifting the burner head upstream can deliver NOx emission reduction. In contrast, supplying fuel to the burner through secondary fuel ports increases NOx emissions, particularly when the burner head is shifted upstream. The lowest predicted NOx emissions from the burner are below 9 ppmvd at 3% of O2 and 14 ppmvd at 3% of O2 for 5% and 30% mass fraction of hydrogen in the fuel, respectively.Open Access article

    The effect of turbulence on the conversion of coal under blast furnace raceway conditions

    Get PDF
    dynamics (CFD) can be used to analyze the process virtually and thus improve its performance. Different reducing agents can be used to (partially) substitute the coke and consequently reduce overall emissions. To analyze different reducing agents effectively using CFD, their conversion process has to be modeled accurately. Under certain conditions, coal particles can cluster as the result of turbulence effects, which further reduces the mass transfer to the coal surface and consequently the conversion rate. We analyze the effect of turbulence under blast furnace raceway conditions on the conversion of coal particles and on the overall burnout. The model is applied in RANS to polydisperse particle systems and this is then compared to the simplified monodisperse assumption. Additionally, the model is extended by adding gasification reactions. Overall, we find that the turbulent effects on coal conversion are significant under blast furnace raceway conditions and should be considered in further simulations. Furthermore, we show that an a-priori assessment is difficult because the analysis via averaged quantities is impractical due to a strong variation of conditions in the furnace. Therefore, the effects of turbulence need to be correlated to the regions of conversion. © 2022 The Author(s)The effect of turbulence on the conversion of coal under blast furnace raceway conditionspublishedVersio

    Chemical Model for Thermal Treatment of Sewage Sludge

    No full text
    Sewage sludge is here studied as a valuable source for processing or energy conversation thanks to its high nutrition and energy content. However, various origins of the wastewater, different water cleaning technologies, and seasonal and regional dependencies lead to the high variability of the sewage sludge properties. In thermal treatment units, that is, incineration, gasification and pyrolysis, sewage sludge serves as feedstock or fuel, hence a proper characterization and a mathematical description of the sewage sludge are required to estimate product streams and to formulate numerical simulations and optimization methods. The presented work introduces a surrogate concept that allows replication of sewage sludge’s ultimate composition, moisture, and ash content. The surrogate approach aims to model the decomposition of any sewage sludge sample, opposite to the established determination of kinetic rates for individual samples. Based on chemical solid surrogate species and corresponding reaction mechanisms, the thermal decomposition path is described. Sewage sludge is represented by a combination of lignocellulosic species, proteins, sugars, lipids, and representative inorganic species. The devolatilization and heterogeneous reactions are formulated such that they can be used together with a detailed gas-phase model, including tar oxidation and emission models for nitrogen and sulfur oxides, recently proposed by the authors. The developed chemical model is applied using a zero-dimensional gasification reactor in order to model weight loss within the thermogravimetric analysis, pyrolysis, gasification and combustion conditions. Weight loss, the composition of product gases, and emission release (nitrogen and sulfur oxides) are captured well by the model. The flexible surrogate approach allows us to represent various sewage sludge samples
    • …
    corecore