1,039 research outputs found

    California Democratic Party v. Jones: Invalidation of the Blanket Primary

    Get PDF

    Evolutionary tree design: An exploratory study of the influence of linear versus branching format on visitors' interpretation and understanding across age groups

    Get PDF
    This exploratory study sought to investigate the influence of tree graphic design--specifically linear versus branching depictions of taxa--on visitors in three different age groups (aged 11-13, 14-18, adults) interpretation and understanding using a multiple-case study strategy. The findings from this research indicate that linear and branched depictions elicit qualitatively different narratives and explanations about the relationships between the taxa in all age groups. Branched tree graphics support scientifically appropriate explanations of evolutionary relationships, i.e. that taxa are related via shared or common ancestry; while linear representations reinforce intuitive interpretations of ancestor-descendant or anagenic relationships. Furthermore, differences in the language used for linear and branched trees suggests that there is a spectrum within an analogy of developmental change that is thought to serve as a transitional concept between intuitive and scientific understanding--with `evolved from' for branched depictions of taxa representing a shift towards an interpretation of shared ancestry rather than an individual transformation from one thing into another. In addition, branched graphics appear to support the correct reading and interpretation of shared or common ancestry in tree diagrams. Mixed reasoning was common and overall reasoning patterns were broadly similar among participants in all age groups, however, older youth (aged 14 to 18) and adults often provided more detail in their explanations and sometimes included references to evolutionary ideas such as variation, inheritance and selection

    Observation of Amounts of Movement Practice Provided during Stroke Rehabilitation

    Get PDF
    Objective To investigate how much movement practice occurred during stroke rehabilitation, and what factors might influence doses of practice provided. Design Observational survey of stroke therapy sessions. Setting Seven inpatient and outpatient rehabilitation sites. Participants We observed a convenience sample of 312 physical and occupational therapy sessions for people with stroke. Interventions Not applicable. Main Outcome Measures We recorded numbers of repetitions in specific movement categories and data on potential modifying factors (patient age, side affected, time since stroke, FIM item scores, years of therapist experience). Descriptive statistics were used to characterize amounts of practice. Correlation and regression analyses were used to determine whether potential factors were related to the amount of practice in the 2 important categories of upper extremity functional movements and gait steps. Results Practice of task-specific, functional upper extremity movements occurred in 51% of the sessions that addressed upper limb rehabilitation, and the average number of repetitions/session was 32 (95% confidence interval [CI]=20–44). Practice of gait occurred in 84% of sessions that addressed lower limb rehabilitation and the average number of gait steps/session was 357 (95% CI=296–418). None of the potential factors listed accounted for significant variance in the amount of practice in either of these 2 categories. Conclusions The amount of practice provided during poststroke rehabilitation is small compared with animal models. It is possible that current doses of task-specific practice during rehabilitation are not adequate to drive the neural reorganization needed to promote function poststroke optimally

    Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo

    Get PDF
    BACKGROUND: Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5 )huntingtin deficient embryos. RESULTS: In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. CONCLUSION: Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease

    A retinoblastoma allele that is mutated at its common E2F interaction site inhibits cell proliferation in gene-targeted mice

    Get PDF
    The retinoblastoma protein (pRB) is best known for regulating cell proliferation through E2F transcription factors. In this report, we investigate the properties of a targeted mutation that disrupts pRB interactions with the transactivation domain of E2Fs. Mice that carry this mutation endogenously (Rb1δG) are defective for pRB-dependent repression of E2F target genes. Except for an accelerated entry into S phase in response to serum stimulation, cell cycle regulation in Rb1δG/δG mouse embryonic fibroblasts (MEFs) strongly resembles that of the wild type. In a serum deprivation-induced cell cycle exit, Rb1δG/δG MEFs display a magnitude of E2F target gene derepression similar to that of Rb1-/- cells, even though Rb1δG/δG cells exit the cell cycle normally. Interestingly, cell cycle arrest in Rb1δG/δG MEFs is responsive to p16 expression and gamma irradiation, indicating that alternate mechanisms can be activated in G1 to arrest proliferation. Some Rb1δG/δG mice die neonatally with a muscle degeneration phenotype, while the others live a normal life span with no evidence of spontaneous tumor formation. Most tissues appear histologically normal while being accompanied by derepression of pRB-regulated E2F targets. This suggests that non- E2F-, pRB-dependent pathways may have a more relevant role in proliferative control than previously identified. © 2014, American Society for Microbiology
    • …
    corecore