4 research outputs found

    Reducing Exciton Binding Energy by Increasing Thin Film Permittivity: An Effective Approach To Enhance Exciton Separation Efficiency in Organic Solar Cells

    No full text
    Photocurrent generation in organic solar cells requires that excitons, which are formed upon light absorption, dissociate into free carriers at the interface of electron acceptor and donor materials. The high exciton binding energy, arising from the low permittivity of organic semiconductor films, generally causes low exciton separation efficiency and subsequently low power conversion efficiency. We demonstrate here, for the first time, that the exciton binding energy in B,O-chelated azadipyrromethene (BO-ADPM) donor films is reduced by increasing the film permittivity by blending the BO-ADPM donor with a high dielectric constant small molecule, camphoric anhydride (CA). Various spectroscopic techniques, including impedance spectroscopy, photon absorption and emission spectroscopies, as well as X-ray spectroscopies, are applied to characterize the thin film electronic and photophysical properties. Planar heterojunction solar cells are fabricated with a BO-ADPM:CA film as the electron donor and C<sub>60</sub> as the acceptor. With an increase in the dielectric constant of the donor film from ∼4.5 to ∼11, the exciton binding energy is reduced and the internal quantum efficiency of the photovoltaic cells improves across the entire spectrum, with an ∼30% improvement in the BO-ADPM photoactive region

    Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials

    No full text
    The donor–acceptor (D–A) approach, which is to incorporate alternating electron-rich (donor) and electron-deficient (acceptor) units along the conjugated polymer mainchain, has become an effective method to provide an informed search for high performance electrochromic low bandgap polymers. Herein a potent electron acceptor, namely, a much more soluble version of the nature-inspired bay-annulated indigo (BAI), was employed in the synthesis of two solution-processable donor–acceptor polymers for efficient electrochromic devices (ECDs). The devices fabricated from spin-coated polymer thin films can switch reversibly between deep blue and transmissive light green hues, with high optical contrasts in the visible and near-infrared (NIR) regions, good coloration efficiency and promising ambient stability. In particular, electrochromic devices based on the copolymer containing a carbazole donor unit exhibit optical contrasts of 41% and 59% in the visible and NIR regions, respectively, and a long-term stability of more than 7500 cycles under ambient conditions with limited reduction in optical contrasts. Such longer term ambient stability underlines the great potential of BAI-derived electron acceptors for the development of practical EC materials

    Electronic and Morphological Studies of Conjugated Polymers Incorporating a Disk-Shaped Polycyclic Aromatic Hydrocarbon Unit

    No full text
    As more research findings have shown the correlation between ordering in organic semiconductor thin films and device performance, it is becoming more essential to exercise control of the ordering through structural tuning. Many recent studies have focused on the influence of side chain engineering on polymer packing orientation in thin films. However, the impact of the size and conformation of aromatic surfaces on thin film ordering has not been investigated in great detail. Here we introduce a disk-shaped polycyclic aromatic hydrocarbon building block with a large π surface, namely, thienoazacoronenes (TACs), as a donor monomer for conjugated polymers. A series of medium bandgap conjugated polymers have been synthesized by copolymerizing TAC with electron donating monomers of varying size. The incorporation of the TAC unit in such semiconducting polymers allows a systematic investigation, both experimentally and theoretically, of the relationships between polymer conformation, electronic structure, thin film morphology, and charge transport properties. Field effect transistors based on these polymers have shown good hole mobilities and photoresponses, proving that TAC is a promising building block for high performance optoelectronic materials
    corecore