37 research outputs found

    Assessment of the TCA functional in computational chemistry and solid-state physics

    Full text link
    We assess the Tognetti-Cortona-Adamo (TCA) generalized gradient approximation correlation functional [J. Chem. Phys. 128:034101 (2008)] for a variety of electronic systems. We find that, even if the TCA functional is not exact for the uniform electron gas, it is very accurate for the jellium surface correlation energies and it gives a realistic description of the quantum oscillations and surface effects of various jellium clusters, that are important model systems in computational chemistry and solid-state physics. When the TCA correlation is combined with the non-empirical PBEint, Wu-Cohen, and PBEsolb_b exchange functionals, the resulting exchange-correlation approximations provide good performances for a broad palette of systems and properties, being reasonably accurate for thermochemistry and geometry of molecules, transition metal complexes, non-covalent interactions,equilibrium lattice constants, bulk moduli, and cohesive energies of solids.Comment: 14 pages, 6 figure

    Semiclassical atom theory applied to solid-state physics

    Full text link
    Using the semiclassical neutral atom theory, we extend to fourth order the modified gradient expansion of the exchange energy of density functional theory. This expansion can be applied both to large atoms and solid-state problems. Moreover, we show that it can be employed to construct a simple and non-empirical generalized gradient approximation (GGA) exchange-correlation functional competitive with state-of-the-art GGAs for solids, but also reasonably accurate for large atoms and ordinary chemistry.Comment: 10 pages, 7 figure

    Optical spectra of solids obtained by time-dependent density-functional theory with the jellium-with-gap model exchange-correlation kernel

    Full text link
    Within the framework of ab initio time-dependent density-functional theory (TD-DFT), we propose a static approximation to the exchange-correlation kernel based on the jellium-with-gap model. This kernel accounts for electron-hole interactions and it is able to address both strongly bound excitons and weak excitonic effects. TD-DFT absorption spectra of several bulk materials (both semiconductor and insulators) are reproduced in very good agreement with the experiments and with a low computational cost.Comment: 5 pages, 3 figures, 1 tabl

    Emerging giant resonant exciton induced by Ta-substitution in anatase TiO2_{2}: a tunable correlation effect

    Full text link
    Titanium dioxide (TiO2_2) has rich physical properties with potential implications in both fundamental physics and new applications. Up-to-date, the main focus of applied research is to tune its optical properties, which is usually done via doping and/or nano-engineering. However, understanding the role of dd-electrons in materials and possible functionalization of dd-electron properties are still major challenges. Herewith, within a combination of an innovative experimental technique, high energy optical conductivity, and of the state-of-the-art {\it ab initio} electronic structure calculations, we report an emerging, novel resonant exciton in the deep ultraviolet region of the optical response. The resonant exciton evolves upon low concentration Ta-substitution in anatase TiO2_{2} films. It is surprisingly robust and related to strong electron-electron and electron-hole interactions. The dd- and ff- orbitals localization, due to Ta-substitution, plays an unexpected role, activating strong electronic correlations and dominating the optical response under photoexcitation. Our results shed light on a new optical phenomenon in anatase TiO2_{2} films and on the possibility of tuning electronic properties by Ta substitution
    corecore