378 research outputs found

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Simulation of gas-dynamic characteristics of a centrifugal compressor vane diffuser using neural networks

    No full text
    The paper presents the results of mathematical simulation of the characteristics of a vane diffuser of a centrifugal compressor intermediate stage, such as the loss coefficient and the deviation angle versus the outlet vane angle of the diffuser. The simulation of these characteristics was made on the basis of processing the results of studies performed by the Research Laboratory “Gas Dynamics of Turbomachines” of Peter the Great St.Petersburg Polytechnic University at the model characteristics of vane diffusers. Given the almost complete absence of recommendations in the literature, the paper describes the technology for constructing neural network models, which includes preparing a sample of input data and determining the optimal structure of the neural network. Based on the obtained mathematical models, a computational experiment was carried out in order to determine the influence of the main geometric and gas-dynamic parameters on the efficiency of vane diffusers. The results of the computational experiment on neural models of the efficiency of a vane diffuser are analyzed according to the existing ideas about the physics of the processes of energy conversion in a vane diffuser

    Neural network method as means of processing experimental data on grain crop yields

    No full text
    In the work based on agroecological and technological testing of varieties of grain crops of domestic and foreign breeding, winter triticale in particular, conducted on the experimental field of the Smolensk State Agricultural Academy between 2015 and 2019, we present the methodology and results of processing the experimental data used for constructing the neural network model. Neural networks are applicable for solving tasks that are difficult for computers of traditional design and humans alike. Those are processing large volumes of experimental data, automation of image recognition, approximation of functions and prognosis. Neural networks include analyzing subject areas and weight coefficients of neurons, detecting conflict samples and outliers, normalizing data, determining the number of samples required for teaching a neural network and increasing the learning quality when their number is insufficient, as well as selecting the neural network type and decomposition based on the number of input neurons. We consider the technology of initial data processing and selecting the optimal neural network structure that allows to significantly reduce modeling errors in comparison with neural networks created with unprepared source data. Our accumulated experience of working with neural networks has demonstrated encouraging results, which indicates the prospects of this area, especially when describing processes with large amounts of variables. In order to verify the resulting neural network model, we have carried out a computational experiment, which showed the possibility of applying scientific results in practice

    Search for the rare hadronic decay Bs0→ppˉB_s^0\to p \bar{p}

    No full text
    A search for the rare hadronic decay Bs0→ppÂŻ is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→ppÂŻ)&lt;4.4(5.1)×10-9 at 90% (95%) confidence level; this is currently the world’s best upper limit. The decay mode B0→ppÂŻ is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→ppÂŻ)=(1.27±0.15±0.05±0.04)×10-8, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π-. The combination of the two LHCb measurements of the B0→ppÂŻ branching fraction yields B(B0→ppÂŻ)=(1.27±0.13±0.05±0.03)×10-8.A search for the rare hadronic decay Bs0→ppˉB_s^0\to p \bar{p} is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb−1^{-1}. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→ppˉ)<4.4 (5.1)×10−9{\cal B}(B_s^0\to p \bar{p}) < 4.4~(5.1) \times 10^{-9} at 90% (95%) confidence level; this is currently the world's best upper limit. The decay mode B0→ppˉB^0\to p \bar{p} is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→ppˉ)=(1.27±0.15±0.05±0.04)×10−8{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π−B^0\to K^+\pi^-. The combination of the two LHCb measurements of the B0→ppˉB^0\to p \bar{p} branching fraction yields B(B0→ppˉ)=(1.27±0.13±0.05±0.03)×10−8{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.13 \pm 0.05 \pm 0.03) \times 10^{-8}

    Measurement of the prompt D0D^0 nuclear modification factor in ppPb collisions at sNN=8.16\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe production of prompt D0D^0 mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of sNN=8.16 TeV\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV} is measured by the LHCb experiment. The nuclear modification factor of prompt D0D^0 mesons is determined as a function of the transverse momentum pTp_\mathrm{T}, and rapidity in the nucleon-nucleon center-of-mass frame y∗y^*. In the forward rapidity region, significantly suppressed production with respect to pppp collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-xx region of ∌10−5\sim 10^{-5}. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of pT>6 GeV/cp_\mathrm{T}>6~\mathrm{GeV}/c and −3.25<y∗<−2.5-3.25<y^*<-2.5, corresponding to x∌0.01x\sim 0.01

    Measurement of the prompt D0D^0 nuclear modification factor in ppPb collisions at sNN=8.16\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe production of prompt D0D^0 mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of sNN=8.16 TeV\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV} is measured by the LHCb experiment. The nuclear modification factor of prompt D0D^0 mesons is determined as a function of the transverse momentum pTp_\mathrm{T}, and rapidity in the nucleon-nucleon center-of-mass frame y∗y^*. In the forward rapidity region, significantly suppressed production with respect to pppp collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-xx region of ∌10−5\sim 10^{-5}. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of pT>6 GeV/cp_\mathrm{T}>6~\mathrm{GeV}/c and −3.25<y∗<−2.5-3.25<y^*<-2.5, corresponding to x∌0.01x\sim 0.01

    Amplitude analysis of the Λc+→pK−π+\Lambda^+_c\to pK^-\pi^+ decay and Λc+\Lambda^+_c baryon polarization measurement in semileptonic beauty hadron decays

    No full text
    An amplitude analysis of Λc+→pK−π+\Lambda^+_c \to pK^-\pi^+ decays together with a measurement of the Λc+\Lambda^+_c polarization vector in semileptonic beauty hadron decays is presented. A sample of 400 000400\,000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Λ(2000)\Lambda(2000) state are also determined. A significant Λc+\Lambda^+_c polarization is found. A large sensitivity of the Λc+→pK−π+\Lambda^+_c \to pK^-\pi^+ decay to the polarization is seen, making the amplitude model suitable for Λc+\Lambda^+_c polarization measurements in other systems.An amplitude analysis of Λc+→pK-π+ decays together with a measurement of the Λc+ polarization vector in semiƍleptonic beauty hadron decays is presented. A sample of 400 000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Λ(2000) state are also determined. A significant Λc+ polarization is found. A large sensitivity of the Λc+→pK-π+ decay to the polarization is seen, making the amplitude model suitable for Λc+ polarization measurements in other systems.An amplitude analysis of Λc+→pK−π+\Lambda^+_c \to pK^-\pi^+ decays together with a measurement of the Λc+\Lambda^+_c polarization vector in semileptonic beauty hadron decays is presented. A sample of 400 000400\,000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Λ(2000)\Lambda(2000) state are also determined. A significant Λc+\Lambda^+_c polarization is found. A large sensitivity of the Λc+→pK−π+\Lambda^+_c \to pK^-\pi^+ decay to the polarization is seen, making the amplitude model suitable for Λc+\Lambda^+_c polarization measurements in other systems
    • 

    corecore