48 research outputs found

    ISOLATION AND CHARACTERIZATION OF A NOVEL HYALURONIDASE INHIBITOR FROM A MARINE ACTINOMYCETES STRAIN

    Get PDF
    A novel hyaluronidase inhibitor (HI) was isolated from the culture extract of a marine- derived actinomycete strain. This strain MB-PO13 was isolated from ascidian (Molgula manhattensis) in Tokyo Bay. Out of about 1,000 isolates from various marine organisms, strain MB-PO13 had the strongest inhibitory activity and was selected for further study. The strain showed abundant-to-moderate growth on most media, forming a grayish mycelium. On the basis of the taxonomical characteristics, the strain was classified as belonging to the genus of Streptomyces and was named as Streptomyces sp. strain MB-PO13. The structure of HI was elucidated by interpretation of NMR data. HI displayed about 25-fold potent hyaluronidase inhibitory activity against hyaluronidase than glycyrrhizin. Keywords: marine actinomycetes; Streptomyces; hyaluronidase inhibitor

    CD4+ T Responses Other Than Th1 Type Are Preferentially Induced by Latency-Associated Antigens in the State of Latent Mycobacterium tuberculosis Infection.

    Get PDF
    Mycobacterium tuberculosis (M. tuberculosis) produces a diverse range of antigenic proteins in its dormant phase. The cytokine profiles of CD4+ T cell responses, especially subsets other than Th1 type (non-Th1 type), against these latency-associated M. tuberculosis antigens such as α-crystallin (Acr), heparin-binding hemagglutinin (HBHA), and mycobacterial DNA-binding protein 1 (MDP-1) remain elusive in relation to the clinical stage of M. tuberculosis infection. In the present study, peripheral blood mononuclear cells (PBMCs) collected from different stages of M. tuberculosis-infected cases and control PBMCs were stimulated with these antigens and ESAT-6/CFP-10. Cytokine profiles of CD4+ T cells were evaluated by intracellular cytokine staining using multicolor flow cytometry. Our results demonstrate that Th1 cytokine responses were predominant after TB onset independent of the type of antigen stimulation. On the contrary, non-Th1 cytokine responses were preferentially induced by latency-associated M. tuberculosis antigens, specifically IL-10 response against Acr in latent M. tuberculosis infection. From these results, we surmise a shift in the CD4+ T cell response from mixed non-Th1 to Th1 dominant type during TB progression

    CD4+ T Responses Other Than Th1 Type Are Preferentially Induced by Latency-Associated Antigens in the State of Latent Mycobacterium tuberculosis Infection

    Get PDF
    Mycobacterium tuberculosis (M. tuberculosis) produces a diverse range of antigenic proteins in its dormant phase. The cytokine profiles of CD4+ T cell responses, especially subsets other than Th1 type (non-Th1 type), against these latency-associated M. tuberculosis antigens such as α-crystallin (Acr), heparin-binding hemagglutinin (HBHA), and mycobacterial DNA-binding protein 1 (MDP-1) remain elusive in relation to the clinical stage of M. tuberculosis infection. In the present study, peripheral blood mononuclear cells (PBMCs) collected from different stages of M. tuberculosis-infected cases and control PBMCs were stimulated with these antigens and ESAT-6/CFP-10. Cytokine profiles of CD4+ T cells were evaluated by intracellular cytokine staining using multicolor flow cytometry. Our results demonstrate that Th1 cytokine responses were predominant after TB onset independent of the type of antigen stimulation. On the contrary, non-Th1 cytokine responses were preferentially induced by latency-associated M. tuberculosis antigens, specifically IL-10 response against Acr in latent M. tuberculosis infection. From these results, we surmise a shift in the CD4+ T cell response from mixed non-Th1 to Th1 dominant type during TB progression

    Efficiency of Peptide Nucleic Acid-Directed PCR Clamping and Its Application in the Investigation of Natural Diets of the Japanese Eel Leptocephali

    Get PDF
    Polymerase chain reaction (PCR)-clamping using blocking primer and DNA-analogs, such as peptide nucleotide acid (PNA), may be used to selectively amplify target DNA for molecular diet analysis. We investigated PCR-clamping efficiency by studying PNA position and mismatch with complementary DNA by designing PNAs at five different positions on the nuclear rDNA internal transcribed spacer 1 of the Japanese eel Anguilla japonica in association with intra-specific nucleotide substitutions. All five PNAs were observed to efficiently inhibit amplification of a fully complementary DNA template. One mismatch between PNA and template DNA inhibited amplification of the template DNA, while two or more mismatches did not. DNA samples extracted from dorsal muscle and intestine of eight wild-caught leptochephalus larvae were subjected to this analysis, followed by cloning, nucleotide sequence analysis, and database homology search. Among 12 sequence types obtained from the intestine sample, six were identified as fungi. No sequence similarities were found in the database for the remaining six types, which were not related to one another. These results, in conjunction with our laboratory observations on larval feeding, suggest that eel leptocephali may not be dependent upon living plankton for their food source

    Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp.

    Get PDF
    Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroism (CD) spectrum with those of other rubromycins. Hyaluromycin (1) consists of a γ-rubromycin core structure possessing a 2-amino-3-hydroxycyclopent-2-enone (C5N) unit as an amide substituent of the carboxyl function; both structural units have been reported only from actinomycetes. Hyaluromycin (1) displayed approximately 25-fold more potent hyaluronidase inhibitory activity against hyaluronidase than did glycyrrhizin, a known inhibitor of plant origin

    Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp.

    Get PDF
    Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroism (CD) spectrum with those of other rubromycins. Hyaluromycin (1) consists of a γ-rubromycin core structure possessing a 2-amino-3-hydroxycyclopent-2-enone (C5N) unit as an amide substituent of the carboxyl function; both structural units have been reported only from actinomycetes. Hyaluromycin (1) displayed approximately 25-fold more potent hyaluronidase inhibitory activity against hyaluronidase than did glycyrrhizin, a known inhibitor of plant origin

    Phenotypic Characterization of a Microbe Producing Substances for Oxidative Stress Resistance Isolated from the Deep Seawater in Izu-Akazawa, Japan

    No full text
    In this study, we tried to isolate microbes from a bag filter (BF) which was used to remove suspended solids from deep seawater (DSW) at a DSW pumping station in Izu-Akazawa, Shizuoka prefecture, Japan.As a result, 941 strains were isolated and only 10 strains from all the isolates showed a resistant effect against oxidative stress. The one strain which showed the highest ability of oxidative stress resistance among 10 strains was called strain “No. 586”, and its 16S rRNA sequence analysis was performed. As a result, the homology of strain No. 586 matched Pseudoalteromonas denitrificans JCM21248 at 98.07%. After comparing the phenotypic characteristics of strain No. 586 and the type strain, it was shown that there were differences in the growth temperature and the color of the colony between the two strains. Furthermore, the resistant effect of strain No. 586 against oxidative stress was remarkably higher than that of the type strain

    Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp.

    No full text
    Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate.The compound’s absolute configuration was determined by the comparison of its circular dichroism (CD) spectrum with those of other rubromycins.Hyaluromycin (1) consists of a γ-rubromycin core structure possessing a 2-amino-3-hydroxycyclopent-2-enone (C5N) unit as an amide substituent of the carboxyl function; both structural units have been reported only from actinomycetes. Hyaluromycin (1) displayed approximately 25-fold more potent hyaluronidase inhibitory activity against hyaluronidase than did glycyrrhizin, a known inhibitor of plant origin
    corecore