163 research outputs found

    A Microsoft HoloLens Mixed Reality Surgical Simulator for Patient-Specific Hip Arthroplasty Training

    Get PDF
    Surgical simulation can offer novice surgeons an opportunity to practice skills outside the operating theatre in a safe controlled environment. According to literature evidence, nowadays there are very few training simulators available for Hip Arthroplasty (HA). In a previous study we have presented a physical simulator based on a lower torso phantom including a patient-specific hemi-pelvis replica embedded in a soft synthetic foam. This work explores the use of Microsoft HoloLens technology to enrich the physical patient-specific simulation with the implementation of wearable mixed reality functionalities. Our HA multimodal simulator based on mixed reality using the HoloLens is described by illustrating the overall system, and by summarizing the main phases of the design and development. Finally, we present a preliminary qualitative study with seven subjects (5 medical students, and 2 orthopedic surgeons) showing encouraging results that suggest the suitability of the HoloLens for the proposed application. However, further studies need to be conducted to perform a quantitative test of the registration accuracy of the virtual content, and to confirm qualitative results in a larger cohort of subjects

    Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    Get PDF
    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41±1.03, p = 0.034) and the number of leukocytes (19.1±12.7 per 20 high-power fields, p = 0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts

    The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of acute myocardial infarction with stem cell transplantation has achieved beneficial effects in many clinical trials. The bone marrow microenvironment of ST-elevation myocardial infarction (STEMI) patients has never been studied even though myocardial infarction is known to cause an imbalance in the acid-base status of these patients. The aim of this study was to assess if the blood gas levels in the bone marrow of STEMI patients affect the characteristics of the bone marrow cells (BMCs) and, furthermore, do they influence the change in cardiac function after autologous BMC transplantation. The arterial, venous and bone marrow blood gas concentrations were also compared.</p> <p>Methods</p> <p>Blood gas analysis of the bone marrow aspirate and peripheral blood was performed for 27 STEMI patients receiving autologous stem cell therapy after percutaneous coronary intervention. Cells from the bone marrow aspirate were further cultured and the bone marrow mesenchymal stem cell (MSC) proliferation rate was determined by MTT assay and the MSC osteogenic differentiation capacity by alkaline phosphatase (ALP) activity assay. All the patients underwent a 2D-echocardiography at baseline and 4 months after STEMI.</p> <p>Results</p> <p>As expected, the levels of pO<sub>2</sub>, pCO<sub>2</sub>, base excess and HCO<sub>3 </sub>were similar in venous blood and bone marrow. Surprisingly, bone marrow showed significantly lower pH and Na<sup>+ </sup>and elevated K<sup>+ </sup>levels compared to arterial and venous blood. There was a positive correlation between the bone marrow pCO<sub>2 </sub>and HCO<sub>3 </sub>levels and MSC osteogenic differentiation capacity. In contrast, bone marrow pCO<sub>2 </sub>and HCO<sub>3 </sub>levels displayed a negative correlation with the proliferation rate of MSCs. Patients with the HCO<sub>3 </sub>level below the median value exhibited a more marked change in LVEF after BMC treatment than patients with HCO<sub>3 </sub>level above the median (11.13 ± 8.07% vs. 2.67 ± 11.89%, P = 0.014).</p> <p>Conclusions</p> <p>Low bone marrow pCO<sub>2 </sub>and HCO<sub>3 </sub>levels may represent the optimal environment for BMCs in terms of their efficacy in autologous stem cell therapy in STEMI patients.</p

    Unique Responses of Stem Cell-Derived Vascular Endothelial and Mesenchymal Cells to High Levels of Glucose

    Get PDF
    Diabetes leads to complications in selected organ systems, and vascular endothelial cell (EC) dysfunction and loss is the key initiating and perpetuating step in the development of these complications. Experimental and clinical studies have shown that hyperglycemia leads to EC dysfunction in diabetes. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. Whether these vascular stem/progenitor cells succumb to the adverse effects of high glucose remains unknown. We sought to determine whether adult vascular stem/progenitor cells display cellular activation and dysfunction upon exposure to high levels of glucose as seen in diabetic complications. Mononuclear cell fraction was prepared from adult blood and bone marrow. EPCs and MPCs were derived, characterized, and exposed to either normal glucose (5 mmol/L) or high glucose levels (25 mmol/L). We then assayed for cell activity and molecular changes following both acute and chronic exposure to high glucose. Our results show that high levels of glucose do not alter the derivation of either EPCs or MPCs. The adult blood-derived EPCs were also resistant to the effects of glucose in terms of growth. Acute exposure to high glucose levels increased caspase-3 activity in EPCs (1.4x increase) and mature ECs (2.3x increase). Interestingly, MPCs showed a transient reduction in growth upon glucose challenge. Our results also show that glucose skews the differentiation of MPCs towards the adipocyte lineage while suppressing other mesenchymal lineages. In summary, our studies show that EPCs are resistant to the effects of high levels of glucose, even following chronic exposure. The findings further show that hyperglycemia may have detrimental effects on the MPCs, causing reduced growth and altering the differentiation potential

    Downregulation of ETS Rescues Diabetes-Induced Reduction of Endothelial Progenitor Cells

    Get PDF
    Transplantation of vasculogenic progenitor cells (VPC) improves neovascularization after ischemia. However, patients with type 2 diabetes mellitus show a reduced VPC number and impaired functional activity. Previously, we demonstrated that p38 kinase inhibition prevents the negative effects of glucose on VPC number by increasing proliferation and differentiation towards the endothelial lineage in vitro. Moreover, the functional capacity of progenitor cells is reduced in a mouse model of metabolic syndrome including type 2 diabetes (Lepr(db)) in vivo.The aim of this study was to elucidate the underlying signalling mechanisms in vitro and in vivo. Therefore, we performed DNA-protein binding arrays in the bone marrow of mice with metabolic syndrome, in blood-derived progenitor cells of diabetic patients as well as in VPC ex vivo treated with high levels of glucose. The transcriptional activation of ETS transcription factors was increased in all samples analyzed. Downregulation of ETS1 expression by siRNA abrogated the reduction of VPC number induced by high-glucose treatment. In addition, we observed a concomitant suppression of the non-endothelial ETS-target genes matrix metalloproteinase 9 (MMP9) and CD115 upon short term lentiviral delivery of ETS-specific shRNAs. Long term inhibition of ETS expression by lentiviral infection increased the number of cells with the endothelial markers CD144 and CD105.These data demonstrate that diabetes leads to dysregulated activation of ETS, which blocks the functional activity of progenitor cells and their commitment towards the endothelial cell lineage

    Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial progenitor cells (EPCs) play an important role in vascular repair and a decrease in the number of EPCs is observed in type 2 diabetes. However, there is no report on the change of EPCs after glycemic control. This study therefore aimed to investigate the EPC number and function in patients with good and poor glycemic control.</p> <p>Methods</p> <p>The number of EPCs was studied using flow cytometry by co-expression of CD34 and VEGFR2. The EPCs were cultured and characterized by the expression of UEA-I, CD34, VEGFR2, vWF and Dil-Ac-LDL engulfment, as well as the ability to form capillary-like structures. An <it>in vitro </it>study on the effect of hyperglycemia on the proliferation and viability of the cultured EPCs was also performed.</p> <p>Results</p> <p>The number of EPCs in type 2 diabetes was significantly decreased compared with healthy controls and there was an inverse correlation between the EPC numbers and plasma glucose, as well as HbA1<sub>C</sub>. The number and function of EPCs in patients with good glycemic control were recovered compared with those with poor glycemic control. When glucose was supplemented in the culture <it>in vitro</it>, there was a negative effect on the proliferation and viability of EPCs, in a dose-dependent manner, whereas the enhancement of apoptosis was observed.</p> <p>Conclusion</p> <p>There was EPC dysfunction in type 2 diabetes which might be improved by strict glycemic control. However, the circulating EPC number and proliferative function in patients with good glycemic control did not reach the level in healthy controls.</p

    PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis

    Get PDF
    BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. METHODOLOGY/PRINCIPAL FINDINGS: We studied the effects of MPs obtained from wild type (MPs(PPARalpha+/+)) and knock-out (MPs(PPARalpha-/-)) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPs(PPARalpha+/+) or MPs(PPARalpha-/-) obtained from blood of mice. Only MPs(PPARalpha+/+) harboring PPAR(alpha) significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPs(PPARalpha+/+) displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPs(PPARalpha+/+) increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPs(PPARalpha+/+) were mediated by NF-kappaB-dependent mechanisms. CONCLUSIONS/SIGNIFICANCE: Our results underscore the obligatory role of PPARalpha carried by MPs for EPC differentiation and angiogenesis. PPARalpha-NF-kappaB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization

    Suppression of Sproutys Has a Therapeutic Effect for a Mouse Model of Ischemia by Enhancing Angiogenesis

    Get PDF
    Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases

    Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis

    Get PDF
    Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
    corecore