4 research outputs found

    Discovery of AZD-2098 and AZD-1678, two potent and bioavailable CCR4 receptor antagonists

    Get PDF
    N-(5-Bromo-3-methoxypyrazin-2-yl)-5-chlorothiophene-2-sulfonamide 1 was identified as a hit in a CCR4 receptor antagonist high throughput screen (HTS) of a sub-set of the AstraZeneca compound bank. As a hit with a lead-like profile, it was an excellent starting point for a CCR4 receptor antagonist program and enabled the rapid progression through the Lead Identification and Lead Optimization phases resulting in the discovery of two bioavailable CCR4 receptor antagonist candidate drugs

    The use of temporary tethers in the meta photocycloaddition reaction

    No full text
    The use of temporary tethers in facilitating meta photocycloaddition reactions between phenol and allyl alcohol derivatives has been investigated. The merits of silicon, carbonate and methylene acetal tethers were assessed, whilst considering strategies for the preparation of the natural products gymnomitrol and gelsemine. The photoadducts were epoxidised, and then subjected to acid catalysed fragmentation with concomitant cleavage of the tether. Depending on whether water or methanol was used during the fragmentation stage of the methylene tethers. the methylene group was either removed altogether or transformed into a MOM group

    From structure to clinic: design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer’s disease

    No full text
    Current therapies for Alzheimer’s disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936—a potential candidate for the treatment of memory loss in Alzheimer’s disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic
    corecore