9,800 research outputs found

    Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure

    Get PDF
    Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.Comment: 32 pages, 6 figure

    Effective response theory for zero energy Majorana bound states in three spatial dimensions

    Get PDF
    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3+1)-dimensional superconductors. Starting in 4+1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an SU(2)2SU(2)_2 Kac-Moody current running along the defect line. The SU(2)2SU(2)_2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3+1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-anti-hedgehog pairs.Comment: 7 pages, 3 figure

    Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions

    Full text link
    Finite temperature Casimir theory of the Dirichlet scalar field is developed, assuming that there is a conventional Casimir setup in physical space with two infinitely large plates separated by a gap R and in addition an arbitrary number q of extra compacified dimensions. As a generalization of earlier theory, we assume in the first part of the paper that there is a scalar 'refractive index' N filling the whole of the physical space region. After presenting general expressions for free energy and Casimir forces we focus on the low temperature case, as this is of main physical interest both for force measurements and also for issues related to entropy and the Nernst theorem. Thereafter, in the second part we analyze dispersive properties, assuming for simplicity q=1, by taking into account dispersion associated with the first Matsubara frequency only. The medium-induced contribution to the free energy, and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to appear in Physica Script

    Analysis of clamped skewed plates with variable thickness.

    Get PDF

    Optimized numerical gradient and Hessian estimation for variational quantum algorithms

    Full text link
    Sampling noisy intermediate-scale quantum devices is a fundamental step that converts coherent quantum-circuit outputs to measurement data for running variational quantum algorithms that utilize gradient and Hessian methods in cost-function optimization tasks. This step, however, introduces estimation errors in the resulting gradient or Hessian computations. To minimize these errors, we discuss tunable numerical estimators, which are the finite-difference (including their generalized versions) and scaled parameter-shift estimators [introduced in Phys. Rev. A 103, 012405 (2021)], and propose operational circuit-averaged methods to optimize them. We show that these optimized numerical estimators offer estimation errors that drop exponentially with the number of circuit qubits for a given sampling-copy number, revealing a direct compatibility with the barren-plateau phenomenon. In particular, there exists a critical sampling-copy number below which an optimized difference estimator gives a smaller average estimation error in contrast to the standard (analytical) parameter-shift estimator, which exactly computes gradient and Hessian components. Moreover, this critical number grows exponentially with the circuit-qubit number. Finally, by forsaking analyticity, we demonstrate that the scaled parameter-shift estimators beat the standard unscaled ones in estimation accuracy under any situation, with comparable performances to those of the difference estimators within significant copy-number ranges, and are the best ones if larger copy numbers are affordable.Comment: 24 pages, 7 figures (updated Fig. 4, new Fig. 6, new Secs. IV C, V C, VII and Appendix C5 since last version
    corecore