18 research outputs found

    Powerful Properties of Ozonated Extra Virgin Olive Oil

    Get PDF
    Extra virgin olive oil has been mainly produced and consumed in Mediterranean countries since ancient times; olive oil is one of the principal ingredients in the Mediterranean diet, and it constitutes the main source of nutritional fat. Aside from the high nutritional content of olive oil, it is also known for its cosmetic and therapeutic properties. In 1956, Thiers obtained satisfactory results in the treatment of scleroderma, stating that olive oil and its derivatives could be considered “a new group of therapeutic agents.” Hincky reported the beneficial properties of olive oil in the treatment of dry, senescent and sensitive skins. This has opened a new perspective for the use of the olive fruit, thus contributing to the increase in research about new applications. One such application is ozonized olive oil, which combines the properties of ozone with those of olive oil, to obtain a peerless compound. The composition of olive oil makes it a suitable vehicle for cutaneous absorption, as it is able to stabilize ozone, which is a highly reactive molecule. The oxidant power of ozone has interesting effects on microorganism and on wound healing

    Morphological and Biochemical Profiles of the Gonadal Cycle in the Sea Urchin Paracentrotus lividus: Wild Type vs. Bred

    Get PDF
    Paracentrotus lividus gonads represent a valued gourmet delicacy, particularly appreciated in Europe and in Japan. Their commercial value is generally associated to their size, freshness, colour and texture. Diet, gametogenesis and environmental conditions have a marked influence, promoting the indispensable mechanisms of synthesis, selective storage and mobilization of the bioactive compounds, as lipids, proteins and carbohydrates of gonads in order to obtain nutrients. The objective of this work is to compare the morphological and biochemical profiles of reproductive life cycle of the gonads of adult P. lividus in its marine natural environment and adult captured sea urchins breeding into a fish aquaculture system. The reproductive cycle of male and female wild and breeding P. lividus was characterized during 1 year by analysing variations of the gonadal content of lipids, proteins and carbohydrates of animals captured at four different locations of the south-western coast of Salento, Italy, with the animals grown in a fish farm and fed with four different types of diet. The gonadal and repletion indexes were determined before the specimen dissection for evaluation of sex, development stages and physiological aspects. Gonads were processed for histological and biochemical analysis. The gonadal content of lipids, proteins and carbohydrates was performed by the gas chromatography-mass spectrometry (GC-MS) and by spectrometry, respectively

    Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes

    Get PDF
    One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules

    Morphology and cytochemistry of dissociated cells of Petrosia ficiformis (Porifera)

    No full text
    In the present paper we report the results of our study aimed to the morphological and cytochemical identification of dissociated Petrosia ficiformis cells, a sponge species common on the rocky shores of the Mediterranean Sea. Indeed, in most species classification of sponge cells is difficult for their high plasticity and totipotency, beside the absence of organs and tissues. In a 30-year-old classification, four main classes of sponge cells were identified: covering cells, scleroblast-like cells, i.e. cells secreting the skeleton, contractile cells and archeocytes. After mechanical dissociation of the specimens collected in the Adriatic Sea, we identified three main cell types, with a diameter ranging from 2 mu m to 20 mu m: (i) choanocytes, very small cells (5 mu m in diameter), (ii) archeocytes, intermediate size cells (from 5 to 10 gm in diameter), (iii) spherulous cells, very heterogeneous elements (8-20 mu m in diameter). Indeed, the cytoplasm of these latter cells is filled by a variable number of granules, which confer peculiar cytochemical staining patterns. In addition, we also identified the relevant presence of symbiotic microorganisms, namely cyanobateria, preferentially distributed inside the ectosome

    Nanomaterials and Autophagy: New Insights in Cancer Treatment

    Get PDF
    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies

    Stress response induced by carbon nanoparticles in Paracentrotus lividus International

    Get PDF
    Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Despite the high rate of pollution generated by nano-pollutants, up to now their toxic effect on development is totally obscure. Embryos treated with carbon nanoparticles, RNA preparation, retro-transcription and quantitative real-time PCR. In response to carbon nano-particles exposure, the embryos collected 24 h later showed a 3,07-fold at 5x10(12) p and a 1,58-fold at 2.5x10(13) p and a 1,92-fold at 2.5x10(14) p increase in Pl14-3-3ε transcript levels compared with controls. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε. Pl14-3-3ε mRNA levels were measured by RT-PCR during development and found to increase from the mesenchyme blastula to the prism stage. Our results confirm the involvement of 14-3-3ε in the stress response elicited by carbon nano-particles

    In vitro analysis of the anti-inflammatory effect of inhomogeneous static magnetic field-exposure on human macrophages and lymphocytes.

    Get PDF
    The effect of inhomogeneous static magnetic field (SMF)-exposure on the production of different cytokines from human peripheral blood mononuclear cells (PMBC), i.e., lymphocytes and macrophages, was tested in vitro. Some cultures were activated with lipopolysaccharide (LPS) at time point -3 h and were either left alone (positive control) or exposed to SMF continuously from 0 until 6, 18, or 24 h. The secretion of interleukin IL-6, IL-8, tumor necrosis factor TNF-α, and IL-10 was tested by ELISA. SMF-exposure caused visible morphological changes on macrophages as well as on lymphocytes, and also seemed to be toxic to lymphocytes ([36.58; 41.52]%, 0.308≤p≤0.444), but not to macrophages (<1.43%, p≥0.987). Analysis of concentrations showed a significantly reduced production of pro-inflammatory cytokines IL-6, IL-8, and TNF-α from macrophages compared to negative control ([56.78; 87.52]%, p = 0.031) and IL-6 compared to positive control ([45.15; 56.03]%, p = 0.035). The production of anti-inflammatory cytokine IL-10 from macrophages and from lymphocytes was enhanced compared to negative control, significantly from lymphocytes ([-183.62; -28.75]%, p = 0.042). The secretion of IL-6 from lymphocytes was significantly decreased compared to positive control ([-115.15; -26.84]%, p = 0.039). This massive in vitro evidence supports the hypotheses that SMF-exposure (i) is harmful to lymphocytes in itself, (ii) suppresses the release of pro-inflammatory cytokines IL-6, IL-8, and TNF-α, and (iii) assists the production of anti-inflammatory cytokine IL-10; thus providing a background mechanism of the earlier in vivo demonstrated anti-inflammatory effects of SMF-exposure
    corecore